Apache APISIX 中利用 serverless 插件修改响应体并添加新字段
2025-05-15 04:48:07作者:昌雅子Ethen
在 API 网关的实际应用中,我们经常需要对上游服务的响应进行修改和增强。Apache APISIX 提供了多种方式来实现这一需求,其中 serverless 插件是一个非常灵活的选择。本文将详细介绍如何使用 serverless-post-function 插件来修改响应体内容并添加新的字段。
响应体修改的需求场景
在实际业务中,我们可能需要:
- 保留原始响应的大部分内容,只修改特定字段
- 基于请求头信息($http_*)向响应中添加新的字段
- 对响应体进行复杂的转换处理
这些需求都可以通过 APISIX 的 serverless 插件来实现,特别是在 body_filter 阶段进行操作。
serverless-post-function 插件详解
serverless-post-function 插件允许我们在请求处理的不同阶段注入 Lua 代码。对于响应体修改的场景,我们需要在 body_filter 阶段进行操作。
基本配置示例
{
"plugins": {
"serverless-post-function": {
"phase": "body_filter",
"functions": [
"return function (conf, ctx)
local core = require(\"apisix.core\")
local body = core.response.hold_body_chunk(ctx)
-- 在这里处理响应体
ngx.arg[1] = \"修改后的响应体内容\"
ngx.arg[2] = true
end"
]
}
}
}
关键点解析
- phase 参数:必须设置为 "body_filter" 才能在响应体过滤阶段执行
- hold_body_chunk:获取当前的响应体内容
- ngx.arg[1]:设置修改后的响应体
- ngx.arg[2]:设置为 true 表示这是最后一个数据块
实际应用示例
假设我们需要:
- 保留原始 JSON 响应
- 修改其中的某个字段
- 添加基于请求头的新字段
return function (conf, ctx)
local core = require("apisix.core")
local body = core.response.hold_body_chunk(ctx)
-- 解析JSON响应体
local json_body, err = core.json.decode(body)
if not json_body then
core.log.error("failed to decode json: ", err)
return
end
-- 修改现有字段
if json_body["existing_field"] then
json_body["existing_field"] = "new_value"
end
-- 添加基于请求头的新字段
json_body["client_ip"] = ctx.var.remote_addr
json_body["user_agent"] = ctx.var.http_user_agent
-- 重新编码为JSON并设置响应
ngx.arg[1] = core.json.encode(json_body)
ngx.arg[2] = true
end
注意事项
- 性能考虑:JSON 编解码会带来一定的性能开销,在高并发场景下需要评估影响
- 错误处理:必须妥善处理 JSON 解析失败的情况
- 大响应体:对于大响应体,需要考虑内存使用情况
- 编码问题:确保响应体的编码正确处理
替代方案
除了 serverless 插件外,APISIX 还提供了:
- response-rewrite 插件:适合简单的响应修改
- 自定义插件开发:对于复杂需求可以开发专用插件
但 serverless 插件提供了最大的灵活性,特别适合快速原型开发和特殊场景处理。
总结
通过 APISIX 的 serverless-post-function 插件,我们可以在 body_filter 阶段灵活地修改响应体内容。这种方法虽然需要编写一些 Lua 代码,但提供了最大的控制能力,能够满足各种复杂的响应修改需求。在实际应用中,建议先评估性能影响,并在必要时考虑开发专用插件来优化性能。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0105
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
478
3.57 K
React Native鸿蒙化仓库
JavaScript
288
340
Ascend Extension for PyTorch
Python
290
321
暂无简介
Dart
730
175
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
245
105
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
850
449
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
20
仓颉编程语言运行时与标准库。
Cangjie
149
885