Apache APISIX 中利用 serverless 插件修改响应体并添加新字段
2025-05-15 05:40:47作者:昌雅子Ethen
在 API 网关的实际应用中,我们经常需要对上游服务的响应进行修改和增强。Apache APISIX 提供了多种方式来实现这一需求,其中 serverless 插件是一个非常灵活的选择。本文将详细介绍如何使用 serverless-post-function 插件来修改响应体内容并添加新的字段。
响应体修改的需求场景
在实际业务中,我们可能需要:
- 保留原始响应的大部分内容,只修改特定字段
- 基于请求头信息($http_*)向响应中添加新的字段
- 对响应体进行复杂的转换处理
这些需求都可以通过 APISIX 的 serverless 插件来实现,特别是在 body_filter 阶段进行操作。
serverless-post-function 插件详解
serverless-post-function 插件允许我们在请求处理的不同阶段注入 Lua 代码。对于响应体修改的场景,我们需要在 body_filter 阶段进行操作。
基本配置示例
{
"plugins": {
"serverless-post-function": {
"phase": "body_filter",
"functions": [
"return function (conf, ctx)
local core = require(\"apisix.core\")
local body = core.response.hold_body_chunk(ctx)
-- 在这里处理响应体
ngx.arg[1] = \"修改后的响应体内容\"
ngx.arg[2] = true
end"
]
}
}
}
关键点解析
- phase 参数:必须设置为 "body_filter" 才能在响应体过滤阶段执行
- hold_body_chunk:获取当前的响应体内容
- ngx.arg[1]:设置修改后的响应体
- ngx.arg[2]:设置为 true 表示这是最后一个数据块
实际应用示例
假设我们需要:
- 保留原始 JSON 响应
- 修改其中的某个字段
- 添加基于请求头的新字段
return function (conf, ctx)
local core = require("apisix.core")
local body = core.response.hold_body_chunk(ctx)
-- 解析JSON响应体
local json_body, err = core.json.decode(body)
if not json_body then
core.log.error("failed to decode json: ", err)
return
end
-- 修改现有字段
if json_body["existing_field"] then
json_body["existing_field"] = "new_value"
end
-- 添加基于请求头的新字段
json_body["client_ip"] = ctx.var.remote_addr
json_body["user_agent"] = ctx.var.http_user_agent
-- 重新编码为JSON并设置响应
ngx.arg[1] = core.json.encode(json_body)
ngx.arg[2] = true
end
注意事项
- 性能考虑:JSON 编解码会带来一定的性能开销,在高并发场景下需要评估影响
- 错误处理:必须妥善处理 JSON 解析失败的情况
- 大响应体:对于大响应体,需要考虑内存使用情况
- 编码问题:确保响应体的编码正确处理
替代方案
除了 serverless 插件外,APISIX 还提供了:
- response-rewrite 插件:适合简单的响应修改
- 自定义插件开发:对于复杂需求可以开发专用插件
但 serverless 插件提供了最大的灵活性,特别适合快速原型开发和特殊场景处理。
总结
通过 APISIX 的 serverless-post-function 插件,我们可以在 body_filter 阶段灵活地修改响应体内容。这种方法虽然需要编写一些 Lua 代码,但提供了最大的控制能力,能够满足各种复杂的响应修改需求。在实际应用中,建议先评估性能影响,并在必要时考虑开发专用插件来优化性能。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
405
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355