Apache APISIX 中利用 serverless 插件修改响应体并添加新字段
2025-05-15 18:58:54作者:昌雅子Ethen
在 API 网关的实际应用中,我们经常需要对上游服务的响应进行修改和增强。Apache APISIX 提供了多种方式来实现这一需求,其中 serverless 插件是一个非常灵活的选择。本文将详细介绍如何使用 serverless-post-function 插件来修改响应体内容并添加新的字段。
响应体修改的需求场景
在实际业务中,我们可能需要:
- 保留原始响应的大部分内容,只修改特定字段
- 基于请求头信息($http_*)向响应中添加新的字段
- 对响应体进行复杂的转换处理
这些需求都可以通过 APISIX 的 serverless 插件来实现,特别是在 body_filter 阶段进行操作。
serverless-post-function 插件详解
serverless-post-function 插件允许我们在请求处理的不同阶段注入 Lua 代码。对于响应体修改的场景,我们需要在 body_filter 阶段进行操作。
基本配置示例
{
"plugins": {
"serverless-post-function": {
"phase": "body_filter",
"functions": [
"return function (conf, ctx)
local core = require(\"apisix.core\")
local body = core.response.hold_body_chunk(ctx)
-- 在这里处理响应体
ngx.arg[1] = \"修改后的响应体内容\"
ngx.arg[2] = true
end"
]
}
}
}
关键点解析
- phase 参数:必须设置为 "body_filter" 才能在响应体过滤阶段执行
- hold_body_chunk:获取当前的响应体内容
- ngx.arg[1]:设置修改后的响应体
- ngx.arg[2]:设置为 true 表示这是最后一个数据块
实际应用示例
假设我们需要:
- 保留原始 JSON 响应
- 修改其中的某个字段
- 添加基于请求头的新字段
return function (conf, ctx)
local core = require("apisix.core")
local body = core.response.hold_body_chunk(ctx)
-- 解析JSON响应体
local json_body, err = core.json.decode(body)
if not json_body then
core.log.error("failed to decode json: ", err)
return
end
-- 修改现有字段
if json_body["existing_field"] then
json_body["existing_field"] = "new_value"
end
-- 添加基于请求头的新字段
json_body["client_ip"] = ctx.var.remote_addr
json_body["user_agent"] = ctx.var.http_user_agent
-- 重新编码为JSON并设置响应
ngx.arg[1] = core.json.encode(json_body)
ngx.arg[2] = true
end
注意事项
- 性能考虑:JSON 编解码会带来一定的性能开销,在高并发场景下需要评估影响
- 错误处理:必须妥善处理 JSON 解析失败的情况
- 大响应体:对于大响应体,需要考虑内存使用情况
- 编码问题:确保响应体的编码正确处理
替代方案
除了 serverless 插件外,APISIX 还提供了:
- response-rewrite 插件:适合简单的响应修改
- 自定义插件开发:对于复杂需求可以开发专用插件
但 serverless 插件提供了最大的灵活性,特别适合快速原型开发和特殊场景处理。
总结
通过 APISIX 的 serverless-post-function 插件,我们可以在 body_filter 阶段灵活地修改响应体内容。这种方法虽然需要编写一些 Lua 代码,但提供了最大的控制能力,能够满足各种复杂的响应修改需求。在实际应用中,建议先评估性能影响,并在必要时考虑开发专用插件来优化性能。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起
deepin linux kernel
C
24
8
暂无简介
Dart
644
149
Ascend Extension for PyTorch
Python
203
219
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
654
282
React Native鸿蒙化仓库
JavaScript
249
317
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.13 K
631
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
77
101
仓颉编译器源码及 cjdb 调试工具。
C++
130
861
仓颉编程语言运行时与标准库。
Cangjie
134
873