Harvester项目升级过程中节点卡在Pre-drained状态的技术分析
问题背景
在Harvester v1.4.1升级至v1.4.2-rc1版本的过程中,技术人员发现了一个关键问题:当集群节点采用操作系统盘与数据盘分离的配置时,升级流程会在第一个节点处停滞在"Pre-drained"状态。这一现象在三节点集群环境中尤为明显,严重影响了生产环境的升级体验。
问题现象
升级过程中,系统界面显示第一个节点长时间停留在"Pre-drained"阶段,无法继续后续升级步骤。同时,集群中多个关键Pod处于Pending状态,包括rancher、harvester-webhook、virt-api和virt-controller等重要组件。这些组件的异常状态直接影响了整个集群的正常运行。
根因分析
通过深入排查日志和技术分析,我们发现问题的核心原因在于KubeVirt组件的Pod调度策略变更:
- 
节点角色限制:从KubeVirt v1.3.0开始,virt-api和virt-controller组件新增了严格的节点亲和性规则,要求这些Pod必须运行在控制平面节点上。而在v1.2.2版本中则没有此限制。
 - 
Pod中断预算(PDB)冲突:当尝试排空第一个控制平面节点时,系统无法安全地驱逐这些关键Pod,因为这样做会违反它们的中断预算策略(PDB),导致升级流程停滞。
 - 
集群拓扑影响:在测试环境中,第二个和第三个节点被配置为纯工作节点,无法自动提升为控制平面节点。这种配置使得集群在功能上更类似于单节点集群,无法满足KubeVirt新版本对多控制平面节点的要求。
 
技术解决方案
针对这一问题,技术团队提出了以下解决方案:
- 
KubeVirt配置调整:通过在KubeVirt自定义资源(CR)中显式设置
.spec.infra.nodePlacement: {}参数,可以覆盖默认的节点亲和性规则,恢复v1.2.2版本的行为模式。 - 
紧急处理方案:对于已经遇到此问题的环境,可以临时删除
virt-api-pdb和virt-controller-pdb这两个Pod中断预算资源,使升级流程能够继续。但这种方法仅建议在紧急情况下使用。 - 
长期架构建议:对于生产环境,建议采用至少三个控制平面节点的集群架构,以确保高可用性和平滑升级体验。
 
验证结果
该问题已在v1.4.2-rc2版本中得到修复。验证测试表明:
- 
在操作系统盘与数据盘分离的三节点环境中,升级流程能够顺利完成,不再出现节点卡在"Pre-drained"状态的情况。
 - 
所有关键系统Pod都能正常调度和运行,集群功能完整。
 - 
通过文件系统检查确认升级过程中没有造成存储层损坏或数据丢失。
 
最佳实践建议
基于此次问题的经验,我们建议Harvester用户:
- 
在规划集群架构时,充分考虑控制平面节点的高可用性配置。
 - 
执行重大版本升级前,仔细阅读版本变更说明,特别是涉及核心组件如KubeVirt的版本更新。
 - 
对于生产环境,建议先在测试环境中验证升级流程,确保兼容性和稳定性。
 - 
定期检查集群中关键组件的Pod调度状态,及时发现潜在的资源调度问题。
 
通过这次问题的分析和解决,Harvester项目在节点升级流程的稳定性和兼容性方面得到了显著提升,为后续版本的大规模部署奠定了更坚实的基础。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00