AFL++ Frida模式下的Android .so文件模糊测试技术解析
2025-06-06 16:50:09作者:申梦珏Efrain
前言
在移动安全研究领域,针对Android原生库(.so文件)的模糊测试是一项重要技术。AFL++作为改进版的模糊测试工具,其Frida模式为Android平台提供了独特的测试方案。本文将深入探讨如何利用AFL++的Frida模式对符号表被剥离的.so文件进行有效模糊测试。
技术背景
Android应用的Native代码通常以动态链接库(.so)形式存在。当符号表被剥离后,传统的基于符号解析的模糊测试方法将失效。AFL++的Frida模式通过动态插桩技术,可以在无需符号表的情况下实现对目标函数的测试。
核心挑战
- 符号表缺失:无法通过常规方式定位目标函数
- 函数调用关系:难以确定函数参数和调用约定
- 执行环境:需要适配Android系统的特殊环境
解决方案
方案一:基于地址偏移的动态调用
通过分析.so文件的二进制结构,可以:
- 使用Frida API获取模块基地址
- 结合反汇编工具确定目标函数偏移
- 动态构造函数调用
关键代码示例:
let base = Module.findBaseAddress("target.so");
let targetFunc = base.add(0x1234); // 假设目标函数偏移为0x1234
let func = new NativeFunction(targetFunc, 'void', ['pointer', 'int']);
方案二:静态链接与符号重定义
更稳定的方法是:
- 将目标.so与测试程序静态链接
- 显式声明目标函数原型
- 直接调用目标函数进行测试
CMake配置示例:
find_library(TARGET_LIB target.so PATHS /path/to/libs)
add_executable(fuzzer harness.cpp)
target_link_libraries(fuzzer ${TARGET_LIB})
方案三:二进制修补技术
对于完全隐藏的函数:
- 使用LIEF等工具修改ELF结构
- 添加导出函数标记
- 使隐藏函数变为可解析状态
最佳实践建议
- 性能考量:QEMU模式通常比Frida模式更快,建议优先考虑
- 环境隔离:在测试前确保清理dlerror状态
- 错误处理:完善错误检查机制,避免模糊测试过程中断
- 偏移验证:通过反汇编工具交叉验证函数偏移量
技术延伸
对于更复杂的场景,可以考虑:
- 结合Capstone/Unicorn进行指令级模拟
- 使用Radare2/Ghidra进行深度二进制分析
- 实现自动化偏移计算脚本
结语
通过本文介绍的技术方案,研究人员可以有效地对符号表被剥离的Android原生库进行模糊测试。AFL++的Frida模式结合二进制分析技术,为移动安全研究提供了强大的工具支持。实际应用中,建议根据目标文件的具体特点选择最适合的方案,并注意测试过程中的稳定性和效率平衡。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C039
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0120
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 STM32到GD32项目移植完全指南:从兼容性到实战技巧 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
434
3.29 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
Ascend Extension for PyTorch
Python
240
272
暂无简介
Dart
693
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
269
328
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
673
仓颉编译器源码及 cjdb 调试工具。
C++
138
869