Apache Doris 工作负载组与计算组绑定机制详解
2025-06-27 15:01:54作者:乔或婵
概述
在现代大数据分析场景中,资源隔离和精细化管控是企业级数据库系统的核心需求。Apache Doris 作为一款高性能的MPP分析型数据库,通过工作负载组(Workload Group)和计算组(Compute Group)机制实现了多租户环境下的资源隔离与管理。本文将深入解析工作负载组与计算组的绑定机制,帮助管理员实现更精细化的资源管控。
核心概念解析
计算组(Compute Group)
计算组是Doris实现资源逻辑隔离的基础单元,具有以下特点:
- 物理资源划分:每个计算组对应一组BE(Backend)节点,形成独立的子集群
- 隔离级别:支持计算资源和存储资源的双重隔离(在存算分离架构中)
- 默认机制:未明确分配的BE节点会自动加入默认计算组(存储分离架构为
default_compute_group,存算一体架构为default)
工作负载组(Workload Group)
工作负载组是Doris进行资源配额管理的逻辑单元:
- 资源配额:可配置CPU、内存等资源的分配比例
- 优先级控制:支持设置不同查询的优先级
- 并发限制:可限制最大并发查询数
绑定机制的设计演进
旧版本架构的局限性
在早期版本中,工作负载组存在以下设计缺陷:
- 全局生效:工作负载组配置会作用于所有计算组
- 资源冲突:不同业务方需要共享同一套资源配置
- 管理僵化:无法满足差异化业务场景的需求
例如,高并发查询业务和大规模数据分析业务需要完全不同的资源配置,但旧架构无法实现这种差异化配置。
新版本的改进方案
新版Doris引入了工作负载组与计算组的绑定机制,实现了:
- 独立配置:每个计算组可拥有专属的工作负载组配置
- 资源隔离:不同业务方的资源配置完全隔离
- 灵活管理:支持按业务需求定制化资源分配

实际应用指南
创建工作负载组
- 创建绑定到特定计算组的工作负载组:
CREATE WORKLOAD GROUP group_a FOR compute_group_a
PROPERTIES('cpu_share'='1024');
- 创建默认计算组的工作负载组(不指定计算组):
CREATE WORKLOAD GROUP group_a
PROPERTIES('cpu_share'='1024');
修改工作负载组
修改特定计算组下的工作负载组配置:
ALTER WORKLOAD GROUP group_a FOR compute_group_a
PROPERTIES('cpu_share'='2048');
注意:ALTER语句只能修改属性,不能改变工作负载组与计算组的绑定关系。
删除工作负载组
- 删除特定计算组下的工作负载组:
DROP WORKLOAD GROUP group_a FOR compute_group_a;
- 删除默认计算组下的工作负载组(不指定计算组):
DROP WORKLOAD GROUP group_a;
重要注意事项
- 绑定关系不可变:工作负载组创建后无法更改其绑定的计算组
- 升级兼容性:从旧版本升级时,系统会自动为每个计算组创建对应的工作负载组
- 权限管理:工作负载组的权限认证仍通过名称关联,与计算组绑定无关
- 默认工作负载组:每个计算组自动拥有名为
normal的默认工作负载组,其生命周期由系统自动管理
最佳实践建议
- 规划阶段:根据业务特点预先设计计算组划分方案
- 资源配置:为不同业务场景的工作负载组设置差异化的资源配额
- 命名规范:采用
业务线_功能的命名方式(如ads_report) - 监控调整:定期检查资源使用情况,动态调整配额配置
通过合理利用工作负载组与计算组的绑定机制,企业可以在单一Doris集群内实现多业务线的资源隔离与精细化管理,显著提升集群资源利用率和系统稳定性。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C094
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
475
3.54 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
225
94
暂无简介
Dart
725
175
React Native鸿蒙化仓库
JavaScript
287
339
Ascend Extension for PyTorch
Python
284
316
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
701
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
441
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19