Apache Doris 工作负载组与计算组绑定机制详解
2025-06-27 15:13:07作者:乔或婵
概述
在现代大数据分析场景中,资源隔离和精细化管控是企业级数据库系统的核心需求。Apache Doris 作为一款高性能的MPP分析型数据库,通过工作负载组(Workload Group)和计算组(Compute Group)机制实现了多租户环境下的资源隔离与管理。本文将深入解析工作负载组与计算组的绑定机制,帮助管理员实现更精细化的资源管控。
核心概念解析
计算组(Compute Group)
计算组是Doris实现资源逻辑隔离的基础单元,具有以下特点:
- 物理资源划分:每个计算组对应一组BE(Backend)节点,形成独立的子集群
- 隔离级别:支持计算资源和存储资源的双重隔离(在存算分离架构中)
- 默认机制:未明确分配的BE节点会自动加入默认计算组(存储分离架构为
default_compute_group,存算一体架构为default)
工作负载组(Workload Group)
工作负载组是Doris进行资源配额管理的逻辑单元:
- 资源配额:可配置CPU、内存等资源的分配比例
- 优先级控制:支持设置不同查询的优先级
- 并发限制:可限制最大并发查询数
绑定机制的设计演进
旧版本架构的局限性
在早期版本中,工作负载组存在以下设计缺陷:
- 全局生效:工作负载组配置会作用于所有计算组
- 资源冲突:不同业务方需要共享同一套资源配置
- 管理僵化:无法满足差异化业务场景的需求
例如,高并发查询业务和大规模数据分析业务需要完全不同的资源配置,但旧架构无法实现这种差异化配置。
新版本的改进方案
新版Doris引入了工作负载组与计算组的绑定机制,实现了:
- 独立配置:每个计算组可拥有专属的工作负载组配置
- 资源隔离:不同业务方的资源配置完全隔离
- 灵活管理:支持按业务需求定制化资源分配

实际应用指南
创建工作负载组
- 创建绑定到特定计算组的工作负载组:
CREATE WORKLOAD GROUP group_a FOR compute_group_a
PROPERTIES('cpu_share'='1024');
- 创建默认计算组的工作负载组(不指定计算组):
CREATE WORKLOAD GROUP group_a
PROPERTIES('cpu_share'='1024');
修改工作负载组
修改特定计算组下的工作负载组配置:
ALTER WORKLOAD GROUP group_a FOR compute_group_a
PROPERTIES('cpu_share'='2048');
注意:ALTER语句只能修改属性,不能改变工作负载组与计算组的绑定关系。
删除工作负载组
- 删除特定计算组下的工作负载组:
DROP WORKLOAD GROUP group_a FOR compute_group_a;
- 删除默认计算组下的工作负载组(不指定计算组):
DROP WORKLOAD GROUP group_a;
重要注意事项
- 绑定关系不可变:工作负载组创建后无法更改其绑定的计算组
- 升级兼容性:从旧版本升级时,系统会自动为每个计算组创建对应的工作负载组
- 权限管理:工作负载组的权限认证仍通过名称关联,与计算组绑定无关
- 默认工作负载组:每个计算组自动拥有名为
normal的默认工作负载组,其生命周期由系统自动管理
最佳实践建议
- 规划阶段:根据业务特点预先设计计算组划分方案
- 资源配置:为不同业务场景的工作负载组设置差异化的资源配额
- 命名规范:采用
业务线_功能的命名方式(如ads_report) - 监控调整:定期检查资源使用情况,动态调整配额配置
通过合理利用工作负载组与计算组的绑定机制,企业可以在单一Doris集群内实现多业务线的资源隔离与精细化管理,显著提升集群资源利用率和系统稳定性。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C036
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
427
3.28 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
344
Ascend Extension for PyTorch
Python
235
268
暂无简介
Dart
686
161
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
327
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
62
33
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
669