Darts时间序列库中静态协变量与动态协变量的正确使用方式
2025-05-27 00:51:13作者:温艾琴Wonderful
概述
在使用Darts时间序列库进行预测建模时,协变量的处理是一个关键环节。本文将详细介绍静态协变量(static covariates)和动态协变量(未来协变量future covariates/过去协变量past covariates)的区别,以及如何在Darts中正确使用它们。
协变量类型区分
在时间序列预测中,协变量可以分为两大类:
-
静态协变量:这些特征在整个时间序列中保持不变,例如气象站ID、设备型号等固有属性。它们不随时间变化。
-
动态协变量:这些特征随时间变化,又分为:
- 未来协变量:未来已知或可预测的特征,如小时、季度、星期几等
- 过去协变量:仅历史已知的特征
常见误区
许多用户容易混淆静态协变量和动态协变量的使用场景。一个典型错误是试图将小时、季度等随时间变化的特征作为静态协变量传入。这些实际上是动态协变量,应该作为未来协变量处理。
正确使用方法
动态协变量处理
对于小时、月份等周期性特征,推荐使用Darts提供的datetime_attribute_timeseries工具函数生成:
from darts import TimeSeries
from darts.utils.timeseries_generation import datetime_attribute_timeseries
# 生成月份和小时特征(使用one-hot编码)
month_series = datetime_attribute_timeseries(
pd.date_range(start=start_time, end=end_time, freq="H"),
attribute="month",
one_hot=True
)
hour_series = datetime_attribute_timeseries(
pd.date_range(start=start_time, end=end_time, freq="H"),
attribute="hour",
one_hot=True
)
# 合并多个协变量
ts_covariates = month_series.stack(hour_series)
多时间序列处理
当处理多个相关时间序列(如多个气象站数据)时,可以使用from_group_dataframe方法批量创建:
# 创建目标序列(多个气象站)
target_series = TimeSeries.from_group_dataframe(
df,
group_cols="station_id", # 按气象站分组
time_col='dt', # 时间列
value_cols=['temperature', 'pressure'] # 目标变量
)
# 创建对应的协变量序列
future_covariates = TimeSeries.from_group_dataframe(
df,
group_cols="station_id",
time_col='dt',
value_cols=['hour', 'quarter', 'dayofyear'] # 协变量
)
静态协变量的特殊处理
真正的静态协变量(如气象站ID)会被自动添加为静态属性。需要注意的是,如果静态协变量是分类变量,需要进行适当的编码转换(如one-hot编码或标签编码)才能被模型使用。
最佳实践建议
-
仔细区分特征的时效性:判断特征是静态不变的还是随时间变化的
-
对于周期性时间特征,使用Darts内置工具生成,可以确保时间对齐
-
多序列处理时,保持目标序列和协变量序列的顺序一致性
-
分类型静态协变量需要进行适当的数值化处理
通过正确理解和使用Darts中的协变量功能,可以显著提升时间序列预测模型的性能,特别是在处理具有丰富上下文信息的复杂时间序列数据时。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
238
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
671
156
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
261
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
859
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217