Darts时间序列库中静态协变量与动态协变量的正确使用方式
2025-05-27 18:32:25作者:温艾琴Wonderful
概述
在使用Darts时间序列库进行预测建模时,协变量的处理是一个关键环节。本文将详细介绍静态协变量(static covariates)和动态协变量(未来协变量future covariates/过去协变量past covariates)的区别,以及如何在Darts中正确使用它们。
协变量类型区分
在时间序列预测中,协变量可以分为两大类:
-
静态协变量:这些特征在整个时间序列中保持不变,例如气象站ID、设备型号等固有属性。它们不随时间变化。
-
动态协变量:这些特征随时间变化,又分为:
- 未来协变量:未来已知或可预测的特征,如小时、季度、星期几等
- 过去协变量:仅历史已知的特征
常见误区
许多用户容易混淆静态协变量和动态协变量的使用场景。一个典型错误是试图将小时、季度等随时间变化的特征作为静态协变量传入。这些实际上是动态协变量,应该作为未来协变量处理。
正确使用方法
动态协变量处理
对于小时、月份等周期性特征,推荐使用Darts提供的datetime_attribute_timeseries
工具函数生成:
from darts import TimeSeries
from darts.utils.timeseries_generation import datetime_attribute_timeseries
# 生成月份和小时特征(使用one-hot编码)
month_series = datetime_attribute_timeseries(
pd.date_range(start=start_time, end=end_time, freq="H"),
attribute="month",
one_hot=True
)
hour_series = datetime_attribute_timeseries(
pd.date_range(start=start_time, end=end_time, freq="H"),
attribute="hour",
one_hot=True
)
# 合并多个协变量
ts_covariates = month_series.stack(hour_series)
多时间序列处理
当处理多个相关时间序列(如多个气象站数据)时,可以使用from_group_dataframe
方法批量创建:
# 创建目标序列(多个气象站)
target_series = TimeSeries.from_group_dataframe(
df,
group_cols="station_id", # 按气象站分组
time_col='dt', # 时间列
value_cols=['temperature', 'pressure'] # 目标变量
)
# 创建对应的协变量序列
future_covariates = TimeSeries.from_group_dataframe(
df,
group_cols="station_id",
time_col='dt',
value_cols=['hour', 'quarter', 'dayofyear'] # 协变量
)
静态协变量的特殊处理
真正的静态协变量(如气象站ID)会被自动添加为静态属性。需要注意的是,如果静态协变量是分类变量,需要进行适当的编码转换(如one-hot编码或标签编码)才能被模型使用。
最佳实践建议
-
仔细区分特征的时效性:判断特征是静态不变的还是随时间变化的
-
对于周期性时间特征,使用Darts内置工具生成,可以确保时间对齐
-
多序列处理时,保持目标序列和协变量序列的顺序一致性
-
分类型静态协变量需要进行适当的数值化处理
通过正确理解和使用Darts中的协变量功能,可以显著提升时间序列预测模型的性能,特别是在处理具有丰富上下文信息的复杂时间序列数据时。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析2 freeCodeCamp音乐播放器项目中的函数调用问题解析3 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析4 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析5 freeCodeCamp课程视频测验中的Tab键导航问题解析6 freeCodeCamp课程中屏幕放大器知识点优化分析7 freeCodeCamp Cafe Menu项目中link元素的void特性解析8 freeCodeCamp英语课程填空题提示缺失问题分析9 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 10 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析
最新内容推荐
ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 Jetson TX2开发板官方资源完全指南:从入门到精通 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 WebVideoDownloader:高效网页视频抓取工具全面使用指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
59
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
973
574

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133