Darts时间序列库中静态协变量与动态协变量的正确使用方式
2025-05-27 04:50:39作者:温艾琴Wonderful
概述
在使用Darts时间序列库进行预测建模时,协变量的处理是一个关键环节。本文将详细介绍静态协变量(static covariates)和动态协变量(未来协变量future covariates/过去协变量past covariates)的区别,以及如何在Darts中正确使用它们。
协变量类型区分
在时间序列预测中,协变量可以分为两大类:
-
静态协变量:这些特征在整个时间序列中保持不变,例如气象站ID、设备型号等固有属性。它们不随时间变化。
-
动态协变量:这些特征随时间变化,又分为:
- 未来协变量:未来已知或可预测的特征,如小时、季度、星期几等
- 过去协变量:仅历史已知的特征
常见误区
许多用户容易混淆静态协变量和动态协变量的使用场景。一个典型错误是试图将小时、季度等随时间变化的特征作为静态协变量传入。这些实际上是动态协变量,应该作为未来协变量处理。
正确使用方法
动态协变量处理
对于小时、月份等周期性特征,推荐使用Darts提供的datetime_attribute_timeseries工具函数生成:
from darts import TimeSeries
from darts.utils.timeseries_generation import datetime_attribute_timeseries
# 生成月份和小时特征(使用one-hot编码)
month_series = datetime_attribute_timeseries(
pd.date_range(start=start_time, end=end_time, freq="H"),
attribute="month",
one_hot=True
)
hour_series = datetime_attribute_timeseries(
pd.date_range(start=start_time, end=end_time, freq="H"),
attribute="hour",
one_hot=True
)
# 合并多个协变量
ts_covariates = month_series.stack(hour_series)
多时间序列处理
当处理多个相关时间序列(如多个气象站数据)时,可以使用from_group_dataframe方法批量创建:
# 创建目标序列(多个气象站)
target_series = TimeSeries.from_group_dataframe(
df,
group_cols="station_id", # 按气象站分组
time_col='dt', # 时间列
value_cols=['temperature', 'pressure'] # 目标变量
)
# 创建对应的协变量序列
future_covariates = TimeSeries.from_group_dataframe(
df,
group_cols="station_id",
time_col='dt',
value_cols=['hour', 'quarter', 'dayofyear'] # 协变量
)
静态协变量的特殊处理
真正的静态协变量(如气象站ID)会被自动添加为静态属性。需要注意的是,如果静态协变量是分类变量,需要进行适当的编码转换(如one-hot编码或标签编码)才能被模型使用。
最佳实践建议
-
仔细区分特征的时效性:判断特征是静态不变的还是随时间变化的
-
对于周期性时间特征,使用Darts内置工具生成,可以确保时间对齐
-
多序列处理时,保持目标序列和协变量序列的顺序一致性
-
分类型静态协变量需要进行适当的数值化处理
通过正确理解和使用Darts中的协变量功能,可以显著提升时间序列预测模型的性能,特别是在处理具有丰富上下文信息的复杂时间序列数据时。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355