DuckDB中百分位数计算精度问题解析
2025-05-05 10:24:15作者:吴年前Myrtle
在数据分析领域,百分位数(Percentile)和分位数(Quantile)是描述数据分布特征的重要统计指标。DuckDB作为一款高性能的分析型数据库,近期有用户反馈其内置的SUMMARIZE函数在计算分位数时存在精度问题,本文将从技术角度深入分析这一现象。
问题现象
当用户使用DuckDB的SUMMARIZE函数计算数据的分位数时,发现不同方法得到的结果存在差异:
- SUMMARIZE函数返回的75分位数值为20,274
- 近似分位数函数approx_quantile返回20,494
- 精确分位数函数quantile_cont/quantile_disc分别返回20,369和20,259
这种差异表明SUMMARIZE函数可能采用了某种近似算法,而非精确计算。
技术背景
在统计学中,分位数计算主要有两种方法:
- 精确计算:需要对数据进行完整排序,时间复杂度为O(n log n)
- 近似计算:使用抽样或概率算法,牺牲精度换取性能,时间复杂度可降至O(n)
DuckDB作为分析型数据库,在SUMMARIZE这类聚合函数中默认采用近似算法是合理的工程权衡,但确实应该在文档中明确说明。
解决方案比较
DuckDB提供了多种分位数计算方法:
quantile_cont:连续分位数,通过线性插值计算quantile_disc:离散分位数,返回实际存在的数值approx_quantile:明确标记为近似算法- SUMMARIZE内置:未明确说明但实际采用近似算法
最佳实践建议
对于不同场景,建议采用以下策略:
- 需要精确结果时:显式使用quantile_cont或quantile_disc函数
- 大数据集且可接受误差时:使用approx_quantile或SUMMARIZE
- 性能敏感场景:考虑预先计算或物化视图
实现原理推测
根据观察结果,SUMMARIZE可能采用了类似T-Digest或KLL Sketch的流式近似算法。这类算法可以:
- 单次扫描数据
- 控制内存使用量
- 提供可配置的精度保证
总结
DuckDB在分位数计算上提供了灵活的选择,但用户需要注意不同函数的精度特性。最新版本已更新文档明确说明SUMMARIZE的近似特性。在实际应用中,开发者应根据数据规模、精度要求和性能需求选择合适的方法。
对于关键业务场景,建议进行小规模验证测试,确认所用方法的误差范围是否可接受。同时,监控数据分布变化,因为近似算法的误差可能随数据分布而变化。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
411
3.16 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
664
323
Ascend Extension for PyTorch
Python
227
255
暂无简介
Dart
676
160
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
659
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
342
146