在kube-prometheus中扩展kube-state-metrics的relabel配置
2025-05-31 15:49:06作者:曹令琨Iris
kube-prometheus作为Kubernetes监控的黄金标准方案,其内置的kube-state-metrics组件负责采集Kubernetes资源对象的状态指标。在实际生产环境中,我们经常需要对这些指标进行标签重写以满足特定的监控需求。
理解kube-state-metrics的默认配置
kube-prometheus默认会为kube-state-metrics创建两个监控任务:
monitoring/kube-state-metrics/0:采集核心指标monitoring/kube-state-metrics/1:采集扩展指标
这两个任务都通过Service发现机制自动配置,但有时我们需要添加自定义的relabel规则来改造指标标签。
自定义relabel配置的实现方式
方法一:通过PrometheusRule自定义
最推荐的方式是通过创建PrometheusRule CRD资源来添加规则:
apiVersion: monitoring.coreos.com/v1
kind: PrometheusRule
metadata:
name: kube-state-metrics-relabel
namespace: monitoring
spec:
groups:
- name: kube-state-metrics-relabel.rules
rules:
- record: kube_pod_info:relabeled
expr: kube_pod_info
labels:
sys_name: "$1"
方法二:修改Prometheus配置
如果需要更底层的控制,可以修改Prometheus的配置:
apiVersion: monitoring.coreos.com/v1
kind: Prometheus
metadata:
name: k8s
namespace: monitoring
spec:
serviceMonitorSelector: {}
additionalScrapeConfigs:
- job_name: 'kube-state-metrics-custom'
honor_labels: true
kubernetes_sd_configs:
- role: endpoints
namespaces:
names: [monitoring]
relabel_configs:
- source_labels: [__meta_kubernetes_service_label_app_kubernetes_io_name]
action: keep
regex: kube-state-metrics
- source_labels: [__meta_kubernetes_endpoint_port_name]
action: keep
regex: http
metric_relabel_configs:
- source_labels: [label_app]
target_label: sys_name
regex: '(.*)'
replacement: '${1}'
最佳实践建议
-
优先使用PrometheusRule:这种方式更符合Kubernetes的声明式理念,且易于维护
-
谨慎使用metric_relabel_configs:过多的重写规则会影响Prometheus性能
-
保持标签一致性:确保新增标签在整个监控体系中具有相同的语义
-
考虑使用Recording Rules:对于复杂的标签转换,可以先通过Recording Rules预处理
-
测试验证:任何relabel配置变更都应先在测试环境验证
通过合理运用relabel配置,我们可以使kube-state-metrics采集的指标更好地适应企业的监控规范,同时保持与kube-prometheus原有体系的兼容性。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
405
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355