React Native Firebase 中 Android 设备获取 FCM 令牌的解决方案
问题背景
在使用 React Native Firebase 的 messaging 模块时,开发者经常遇到 Android 设备无法获取 FCM (Firebase Cloud Messaging) 令牌的问题,而 iOS 设备却能正常获取。这个问题主要出现在 Android 13 及以上版本中,因为从 Android 13 开始,Google 引入了运行时通知权限机制。
核心问题分析
在 Android 13+ 设备上,应用需要明确请求 POST_NOTIFICATIONS 权限才能获取 FCM 令牌。传统的权限请求方式可能无法正确处理授权状态,导致即使用户授予了通知权限,应用仍然无法获取 FCM 令牌。
解决方案
以下是经过验证的有效解决方案代码:
export async function requestUserPermission() {
let authStatus;
if (Platform.OS === 'android') {
try {
const granted = await PermissionsAndroid.request(
PermissionsAndroid.PERMISSIONS.POST_NOTIFICATIONS,
);
if (granted === PermissionsAndroid.RESULTS.GRANTED) {
authStatus = messaging.AuthorizationStatus.AUTHORIZED;
} else {
authStatus = messaging.AuthorizationStatus.DENIED;
}
} catch (error) {
console.warn('Error requesting notification permission:', error);
authStatus = messaging.AuthorizationStatus.DENIED;
}
} else {
authStatus = await messaging().requestPermission();
}
const enabled =
authStatus === messaging.AuthorizationStatus.AUTHORIZED ||
authStatus === messaging.AuthorizationStatus.PROVISIONAL;
if (enabled) {
GetFcmToken();
}
}
关键改进点
-
正确处理 Android 权限请求结果:明确检查 PermissionsAndroid.RESULTS.GRANTED 状态,而不是简单地依赖返回的授权状态。
-
错误处理机制:添加了 try-catch 块来捕获可能出现的权限请求异常。
-
状态映射:将 Android 的权限结果映射到与 iOS 一致的 messaging.AuthorizationStatus 枚举值,保持跨平台一致性。
-
清晰的授权状态判断:使用明确的 AUTHORIZED 和 PROVISIONAL 状态来判断是否获取 FCM 令牌。
实现细节
-
权限请求:对于 Android 设备,使用 PermissionsAndroid.request 方法请求 POST_NOTIFICATIONS 权限。
-
结果处理:将 Android 的权限授予结果 (GRANTED/DENIED) 转换为 messaging 模块的授权状态枚举值。
-
跨平台一致性:iOS 仍使用 messaging().requestPermission() 方法,保持原有逻辑不变。
-
令牌获取:只有在确认授权状态为 AUTHORIZED 或 PROVISIONAL 时,才会调用 GetFcmToken() 函数获取 FCM 令牌。
最佳实践建议
-
权限请求时机:应在应用启动时尽早请求通知权限,但也要考虑用户体验,可以在用户首次使用通知相关功能时再请求。
-
权限拒绝处理:当用户拒绝权限时,应提供解释并引导用户到设置中手动开启权限。
-
令牌缓存:获取到的 FCM 令牌应缓存在本地存储中,避免重复获取。
-
令牌更新监听:注册 onTokenRefresh 监听器,以处理令牌更新的情况。
通过以上改进,开发者可以确保在 Android 设备上也能可靠地获取 FCM 令牌,从而实现完整的推送通知功能。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00