React Native Firebase 中 Android 设备获取 FCM 令牌的解决方案
问题背景
在使用 React Native Firebase 的 messaging 模块时,开发者经常遇到 Android 设备无法获取 FCM (Firebase Cloud Messaging) 令牌的问题,而 iOS 设备却能正常获取。这个问题主要出现在 Android 13 及以上版本中,因为从 Android 13 开始,Google 引入了运行时通知权限机制。
核心问题分析
在 Android 13+ 设备上,应用需要明确请求 POST_NOTIFICATIONS 权限才能获取 FCM 令牌。传统的权限请求方式可能无法正确处理授权状态,导致即使用户授予了通知权限,应用仍然无法获取 FCM 令牌。
解决方案
以下是经过验证的有效解决方案代码:
export async function requestUserPermission() {
let authStatus;
if (Platform.OS === 'android') {
try {
const granted = await PermissionsAndroid.request(
PermissionsAndroid.PERMISSIONS.POST_NOTIFICATIONS,
);
if (granted === PermissionsAndroid.RESULTS.GRANTED) {
authStatus = messaging.AuthorizationStatus.AUTHORIZED;
} else {
authStatus = messaging.AuthorizationStatus.DENIED;
}
} catch (error) {
console.warn('Error requesting notification permission:', error);
authStatus = messaging.AuthorizationStatus.DENIED;
}
} else {
authStatus = await messaging().requestPermission();
}
const enabled =
authStatus === messaging.AuthorizationStatus.AUTHORIZED ||
authStatus === messaging.AuthorizationStatus.PROVISIONAL;
if (enabled) {
GetFcmToken();
}
}
关键改进点
-
正确处理 Android 权限请求结果:明确检查 PermissionsAndroid.RESULTS.GRANTED 状态,而不是简单地依赖返回的授权状态。
-
错误处理机制:添加了 try-catch 块来捕获可能出现的权限请求异常。
-
状态映射:将 Android 的权限结果映射到与 iOS 一致的 messaging.AuthorizationStatus 枚举值,保持跨平台一致性。
-
清晰的授权状态判断:使用明确的 AUTHORIZED 和 PROVISIONAL 状态来判断是否获取 FCM 令牌。
实现细节
-
权限请求:对于 Android 设备,使用 PermissionsAndroid.request 方法请求 POST_NOTIFICATIONS 权限。
-
结果处理:将 Android 的权限授予结果 (GRANTED/DENIED) 转换为 messaging 模块的授权状态枚举值。
-
跨平台一致性:iOS 仍使用 messaging().requestPermission() 方法,保持原有逻辑不变。
-
令牌获取:只有在确认授权状态为 AUTHORIZED 或 PROVISIONAL 时,才会调用 GetFcmToken() 函数获取 FCM 令牌。
最佳实践建议
-
权限请求时机:应在应用启动时尽早请求通知权限,但也要考虑用户体验,可以在用户首次使用通知相关功能时再请求。
-
权限拒绝处理:当用户拒绝权限时,应提供解释并引导用户到设置中手动开启权限。
-
令牌缓存:获取到的 FCM 令牌应缓存在本地存储中,避免重复获取。
-
令牌更新监听:注册 onTokenRefresh 监听器,以处理令牌更新的情况。
通过以上改进,开发者可以确保在 Android 设备上也能可靠地获取 FCM 令牌,从而实现完整的推送通知功能。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00