AWS Deep Learning Containers发布PyTorch 2.7.1训练镜像
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的预配置深度学习环境容器镜像,它集成了主流深度学习框架及其依赖项,使开发者能够快速部署和运行深度学习工作负载。这些容器镜像经过优化,可直接在Amazon EC2实例上运行,大幅简化了深度学习环境的配置过程。
近日,AWS Deep Learning Containers项目发布了PyTorch 2.7.1版本的训练镜像,为开发者提供了最新的PyTorch训练环境支持。本次更新包含CPU和GPU两个版本,均基于Ubuntu 22.04操作系统构建。
CPU版本镜像特性
CPU版本镜像(pytorch-training:2.7.1-cpu-py312-ubuntu22.04-ec2-v1.4)主要面向不需要GPU加速的训练场景。该镜像包含了PyTorch 2.7.1 CPU版本及其相关生态工具:
- 核心框架:PyTorch 2.7.1 + CPU优化版本
- Python环境:Python 3.12
- 科学计算栈:NumPy 2.3.0、SciPy 1.15.3
- 计算机视觉支持:OpenCV 4.11.0、Pillow 11.2.1
- 数据处理工具:Pandas 2.3.0
- 机器学习库:scikit-learn 1.7.0
- 自然语言处理:spaCy 3.8.7
- 开发工具:Cython 3.1.2、pybind11 2.13.6
该镜像还预装了AWS CLI工具(1.40.32版本)和boto3 SDK(1.38.33版本),方便用户与AWS服务进行交互。
GPU版本镜像特性
GPU版本镜像(pytorch-training:2.7.1-gpu-py312-cu128-ubuntu22.04-ec2-v1.4)针对CUDA 12.8进行了优化,适合需要GPU加速的训练任务。除了包含CPU版本的所有功能外,还增加了:
- CUDA支持:CUDA 12.8工具链
- cuDNN:9.x版本
- NCCL:支持NVIDIA Collective Communications Library
- GPU优化版PyTorch:PyTorch 2.7.1 + cu128
GPU版本额外包含了Ninja构建系统(1.11.1.4版本),用于加速CUDA内核的编译过程。
技术细节与优化
这两个镜像都基于Ubuntu 22.04 LTS构建,使用了GCC 11作为默认编译器,并配置了最新的MKL(2025.1.0版本)数学库以获得最佳性能。镜像中还包含了开发工具如Emacs,方便开发者进行代码编辑。
值得注意的是,PyTorch 2.7.1版本带来了多项性能改进和新特性,包括:
- 改进了动态形状支持
- 增强的分布式训练功能
- 优化了内存使用效率
- 新增了多个算子支持
AWS对这些镜像进行了专门的优化,确保其在EC2实例上能够发挥最佳性能。用户可以直接使用这些镜像,无需担心依赖项管理和环境配置问题,可以专注于模型开发和训练工作。
对于需要自定义环境的用户,这些镜像也可以作为基础镜像使用,在其基础上安装额外的软件包或进行进一步配置。AWS定期更新这些容器镜像,确保用户能够获得最新的安全补丁和性能改进。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C084
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00