Pydantic V2 中自定义复杂类型序列化行为的变更与修复
2025-05-09 00:41:19作者:江焘钦
在 Pydantic V2.10.0 版本中,开发者发现了一个关于自定义复杂类型序列化行为的变更,这导致了一些现有代码在升级后出现兼容性问题。本文将深入分析这个问题及其解决方案。
问题背景
Pydantic 是一个强大的 Python 数据验证和设置管理库,它允许开发者定义数据模型并自动处理数据验证和序列化。在 V2.10.0 版本中,当开发者尝试自定义复杂类型(如复数 complex)的序列化行为时,发现 dump_python 方法的输出从原来的复数对象变成了字符串表示形式。
技术细节
问题的核心在于 json_or_python_schema 的使用方式。开发者原本通过以下方式定义复数类型的序列化:
- 使用
json_or_python_schema来区分 JSON 和 Python 的序列化路径 - 在 JSON 路径中,将复数转换为元组形式
(real, imag) - 在 Python 路径中,直接保留复数对象
在 V2.10.0 中,当使用 is_instance_schema 作为 Python 路径的验证器时,复数对象会被意外转换为字符串形式。这是由 pydantic-core 内部的一个 bug 修复引起的。
解决方案
Pydantic 团队在 V2.10.1 版本中修复了这个问题。修复的关键在于正确指定 Python 路径的 schema 类型。对于复数类型,应该使用 complex_schema() 而不是 is_instance_schema。
以下是修复后的正确用法示例:
from pydantic import TypeAdapter
from pydantic_core import SchemaSerializer, core_schema
schema = core_schema.json_or_python_schema(
json_schema=core_schema.no_info_plain_validator_function(lambda v: complex(*v)),
python_schema=core_schema.complex_schema(),
serialization=core_schema.plain_serializer_function_ser_schema(
lambda v: (v.real, v.imag),
info_arg=False,
return_schema=TypeAdapter(tuple[float, float]).core_schema,
when_used="json",
),
)
最佳实践
对于自定义类型的序列化,建议开发者:
- 明确区分 JSON 和 Python 的序列化路径
- 对于内置类型,使用对应的 schema 函数(如
complex_schema等) - 在升级 Pydantic 版本时,特别注意序列化行为的测试
- 对于复杂场景,考虑编写专门的测试用例验证序列化行为
总结
Pydantic V2.10.1 修复了自定义复数类型序列化的问题,确保了向后兼容性。这个案例展示了类型系统在数据序列化中的重要性,也提醒开发者在自定义复杂类型行为时需要更加谨慎。理解 Pydantic 的 schema 系统对于构建健壮的数据处理逻辑至关重要。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
329
391
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
162
暂无简介
Dart
764
189
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
746
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
113
137