CogVideo项目中的视频日志内存溢出问题分析与解决方案
问题背景
在CogVideo项目的SFT(监督式微调)训练过程中,当尝试记录训练视频到WandB平台时,出现了显存不足(OOM)的问题。这个问题特别发生在使用H100(80GB)显卡进行5B模型的微调过程中。
问题现象
用户报告在将sft.yaml
配置文件中的only_log_video_latents
参数设置为False并启用WandB日志记录后,系统抛出显存不足错误。错误信息显示,尽管GPU总容量为79.11GB,当前空闲6.68GB,但PyTorch尝试分配8.08GB时失败。
技术分析
-
显存需求分析:5B参数的CogVideo模型在训练时本身就需要大量显存,特别是在解码视频帧时会产生额外的显存开销。
-
配置问题:原配置是为16块H100显卡设计的分布式训练环境,当在单卡环境下运行时,显存明显不足。
-
视频解码开销:当
only_log_video_latents
设为False时,系统会解码完整的视频帧用于日志记录,这一过程需要大量显存。
解决方案
-
使用Diffusers版本:官方建议使用Diffusers版本的实现,通过cogvideox-factory进行训练,这能更好地管理显存使用。
-
保持仅记录潜在空间:将
only_log_video_latents
参数保持为True,只记录视频的潜在表示而非完整解码帧。 -
分布式训练:如果必须使用完整视频日志,建议在多GPU环境下运行,以分摊显存压力。
-
显存优化配置:可以尝试设置
PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True
环境变量来减少显存碎片。
最佳实践建议
对于CogVideo这类大规模视频生成模型的训练,建议:
-
始终在分布式环境下进行训练,特别是对于5B及以上规模的模型。
-
谨慎使用视频日志功能,评估其对训练稳定性的影响。
-
考虑使用梯度检查点等技术来优化显存使用。
-
在单卡环境下,优先考虑使用模型并行或参数高效的微调方法。
通过以上分析和建议,研究人员可以更有效地在资源受限的环境下进行CogVideo模型的训练和调试工作。
- QQwen3-Omni-30B-A3B-InstructQwen3-Omni是多语言全模态模型,原生支持文本、图像、音视频输入,并实时生成语音。00
community
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息09GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0274get_jobs
💼【AI找工作助手】全平台自动投简历脚本:(boss、前程无忧、猎聘、拉勾、智联招聘)Java01Hunyuan3D-2
Hunyuan3D 2.0:高分辨率三维生成系统,支持精准形状建模与生动纹理合成,简化资产再创作流程。Python00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









