CogVideo项目中的视频日志内存溢出问题分析与解决方案
问题背景
在CogVideo项目的SFT(监督式微调)训练过程中,当尝试记录训练视频到WandB平台时,出现了显存不足(OOM)的问题。这个问题特别发生在使用H100(80GB)显卡进行5B模型的微调过程中。
问题现象
用户报告在将sft.yaml配置文件中的only_log_video_latents参数设置为False并启用WandB日志记录后,系统抛出显存不足错误。错误信息显示,尽管GPU总容量为79.11GB,当前空闲6.68GB,但PyTorch尝试分配8.08GB时失败。
技术分析
-
显存需求分析:5B参数的CogVideo模型在训练时本身就需要大量显存,特别是在解码视频帧时会产生额外的显存开销。
-
配置问题:原配置是为16块H100显卡设计的分布式训练环境,当在单卡环境下运行时,显存明显不足。
-
视频解码开销:当
only_log_video_latents设为False时,系统会解码完整的视频帧用于日志记录,这一过程需要大量显存。
解决方案
-
使用Diffusers版本:官方建议使用Diffusers版本的实现,通过cogvideox-factory进行训练,这能更好地管理显存使用。
-
保持仅记录潜在空间:将
only_log_video_latents参数保持为True,只记录视频的潜在表示而非完整解码帧。 -
分布式训练:如果必须使用完整视频日志,建议在多GPU环境下运行,以分摊显存压力。
-
显存优化配置:可以尝试设置
PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True环境变量来减少显存碎片。
最佳实践建议
对于CogVideo这类大规模视频生成模型的训练,建议:
-
始终在分布式环境下进行训练,特别是对于5B及以上规模的模型。
-
谨慎使用视频日志功能,评估其对训练稳定性的影响。
-
考虑使用梯度检查点等技术来优化显存使用。
-
在单卡环境下,优先考虑使用模型并行或参数高效的微调方法。
通过以上分析和建议,研究人员可以更有效地在资源受限的环境下进行CogVideo模型的训练和调试工作。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C094
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00