Torus项目实现语义搜索的完整指南
2025-06-08 13:50:24作者:咎岭娴Homer
引言:什么是语义搜索?
语义搜索是一种能够理解词语背后含义的搜索技术,它通过AI和机器学习解读自然语言的上下文,而不仅仅是匹配关键词。与传统的关键词搜索相比,语义搜索能够更准确地理解用户意图,返回更相关的结果。
在Torus项目中,我们利用PostgreSQL的pgvector扩展和Elixir生态系统的强大功能,实现了高效的语义搜索解决方案。
准备工作
系统要求
- 使用PostgreSQL数据库
- 已安装Ecto库
- 已安装pgvector扩展(执行
CREATE EXTENSION IF NOT EXISTS vector;)
核心概念:嵌入向量(Embedding)
嵌入向量是将文本(单词、句子或文档)转换为高维空间中的数值表示。它捕获了文本的语义信息,使得我们可以通过数学方法比较不同文本的相似度。
语义搜索三阶段
第一阶段:生成并存储嵌入向量
# 示例:为文章生成嵌入向量
embedding = Torus.to_vector(post_content)
Torus提供了多种生成嵌入向量的方式:
- HuggingFace API:使用HuggingFace的预训练模型
- Gemini API:Google的AI模型服务
- OpenAI API:使用OpenAI的嵌入模型
- PostgresML:直接在数据库中执行模型推理
- 本地NxServing:使用本地GPU运行模型
第二阶段:生成搜索词的嵌入向量
search_vector = Torus.to_vector(search_term)
第三阶段:比较向量相似度
Post
|> Torus.semantic([p], p.embedding, search_vector)
|> Repo.all()
嵌入向量生成方案详解
1. HuggingFace集成
配置示例:
config :torus,
embedding_module: Torus.Embeddings.HuggingFace,
token: System.get_env("HUGGING_FACE_API_KEY")
特点:
- 使用HuggingFace丰富的模型库
- 默认使用"sentence-transformers/all-MiniLM-L6-v2"模型
- 可通过配置更换模型
2. 本地GPU推理
对于有GPU支持的服务器,可以使用本地推理:
config :torus, embedding_module: Torus.Embeddings.LocalNxServing
需要添加依赖:
{:bumblebee, "~> 0.6"},
{:nx, "~> 0.9"}
3. 批处理与缓存
为提高性能,Torus提供了:
批处理(Batcher):
config :torus,
embedding_module: Torus.Embeddings.Batcher,
max_batch_size: 10,
default_batch_timeout: 100
缓存(NebulexCache):
config :torus,
embedding_module: Torus.Embeddings.NebulexCache,
cache: Nebulex.Cache
推荐的生产环境配置链:
NebulexCache → Batcher → HuggingFace/其他API
数据库设计与存储策略
推荐的表结构
create table(:embeddings) do
add :model, :string, null: false
add :metadata, :jsonb, default: "{}"
add :embedding, :vector, size: 384, null: false
end
数据关联设计
建议使用多对多关系表连接业务数据和嵌入向量,便于版本管理和更新。
嵌入过程策略
- 初始数据:使用Oban作业批量处理现有数据
- 新增数据:
- 方案A:定时任务批量处理
- 方案B:插入后立即调度作业
- 方案C(不推荐):在事务中同步生成
搜索实现细节
基本搜索实现
def search(term) do
search_vector = Torus.to_vector(term)
Post
|> join(:inner, [p], pe in "post_embeddings", on: pe.post_id == p.id)
|> join(:inner, [p, pe], e in "embeddings", on: pe.embedding_id == e.id)
|> Torus.semantic([p, pe, e], e.embedding, search_vector)
|> Repo.all()
end
高级参数
distance:指定距离计算方法(如:l2_distance)pre_filter:设置相似度阈值
性能优化建议
- 为嵌入向量列创建适当的索引
- 合理设置批处理大小和超时时间
- 对频繁查询的文本使用缓存
- 考虑使用分区表管理大量嵌入向量
- 监控API调用频率和成本
自定义扩展
Torus设计为高度可扩展,您可以:
- 实现自己的
Torus.Embedding行为 - 组合不同的嵌入模块
- 添加预处理/后处理逻辑
- 集成其他向量数据库服务
总结
通过Torus项目实现语义搜索,开发者可以:
- 轻松集成多种AI模型服务
- 灵活处理不同规模的文本数据
- 构建高性能、可扩展的语义搜索功能
- 根据需求定制整个处理流程
无论是初创项目还是大型应用,Torus都提供了从简单到高级的完整解决方案,帮助开发者快速实现基于语义的智能搜索功能。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp英语课程填空题提示缺失问题分析2 freeCodeCamp全栈开发课程中React实验项目的分类修正3 freeCodeCamp音乐播放器项目中的函数调用问题解析4 freeCodeCamp课程页面空白问题的技术分析与解决方案5 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析6 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 7 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析8 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析9 freeCodeCamp Cafe Menu项目中link元素的void特性解析10 freeCodeCamp课程中屏幕放大器知识点优化分析
最新内容推荐
CVE-2024-38077伪代码修复版EXP资源详解:Windows远程桌面授权服务问题利用指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 开源电子设计自动化利器:KiCad EDA全方位使用指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 RadiAnt DICOM Viewer 2021.2:专业医学影像阅片软件的全面指南 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 WebVideoDownloader:高效网页视频抓取工具全面使用指南
项目优选
收起
deepin linux kernel
C
24
6
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
242
2.38 K
仓颉编译器源码及 cjdb 调试工具。
C++
116
87
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
405
React Native鸿蒙化仓库
JavaScript
216
291
Ascend Extension for PyTorch
Python
79
113
仓颉编程语言运行时与标准库。
Cangjie
123
98
仓颉编程语言测试用例。
Cangjie
34
71
暂无简介
Dart
539
118
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
591
119