Torus项目实现语义搜索的完整指南
2025-06-08 14:55:42作者:咎岭娴Homer
引言:什么是语义搜索?
语义搜索是一种能够理解词语背后含义的搜索技术,它通过AI和机器学习解读自然语言的上下文,而不仅仅是匹配关键词。与传统的关键词搜索相比,语义搜索能够更准确地理解用户意图,返回更相关的结果。
在Torus项目中,我们利用PostgreSQL的pgvector扩展和Elixir生态系统的强大功能,实现了高效的语义搜索解决方案。
准备工作
系统要求
- 使用PostgreSQL数据库
- 已安装Ecto库
- 已安装pgvector扩展(执行
CREATE EXTENSION IF NOT EXISTS vector;)
核心概念:嵌入向量(Embedding)
嵌入向量是将文本(单词、句子或文档)转换为高维空间中的数值表示。它捕获了文本的语义信息,使得我们可以通过数学方法比较不同文本的相似度。
语义搜索三阶段
第一阶段:生成并存储嵌入向量
# 示例:为文章生成嵌入向量
embedding = Torus.to_vector(post_content)
Torus提供了多种生成嵌入向量的方式:
- HuggingFace API:使用HuggingFace的预训练模型
- Gemini API:Google的AI模型服务
- OpenAI API:使用OpenAI的嵌入模型
- PostgresML:直接在数据库中执行模型推理
- 本地NxServing:使用本地GPU运行模型
第二阶段:生成搜索词的嵌入向量
search_vector = Torus.to_vector(search_term)
第三阶段:比较向量相似度
Post
|> Torus.semantic([p], p.embedding, search_vector)
|> Repo.all()
嵌入向量生成方案详解
1. HuggingFace集成
配置示例:
config :torus,
embedding_module: Torus.Embeddings.HuggingFace,
token: System.get_env("HUGGING_FACE_API_KEY")
特点:
- 使用HuggingFace丰富的模型库
- 默认使用"sentence-transformers/all-MiniLM-L6-v2"模型
- 可通过配置更换模型
2. 本地GPU推理
对于有GPU支持的服务器,可以使用本地推理:
config :torus, embedding_module: Torus.Embeddings.LocalNxServing
需要添加依赖:
{:bumblebee, "~> 0.6"},
{:nx, "~> 0.9"}
3. 批处理与缓存
为提高性能,Torus提供了:
批处理(Batcher):
config :torus,
embedding_module: Torus.Embeddings.Batcher,
max_batch_size: 10,
default_batch_timeout: 100
缓存(NebulexCache):
config :torus,
embedding_module: Torus.Embeddings.NebulexCache,
cache: Nebulex.Cache
推荐的生产环境配置链:
NebulexCache → Batcher → HuggingFace/其他API
数据库设计与存储策略
推荐的表结构
create table(:embeddings) do
add :model, :string, null: false
add :metadata, :jsonb, default: "{}"
add :embedding, :vector, size: 384, null: false
end
数据关联设计
建议使用多对多关系表连接业务数据和嵌入向量,便于版本管理和更新。
嵌入过程策略
- 初始数据:使用Oban作业批量处理现有数据
- 新增数据:
- 方案A:定时任务批量处理
- 方案B:插入后立即调度作业
- 方案C(不推荐):在事务中同步生成
搜索实现细节
基本搜索实现
def search(term) do
search_vector = Torus.to_vector(term)
Post
|> join(:inner, [p], pe in "post_embeddings", on: pe.post_id == p.id)
|> join(:inner, [p, pe], e in "embeddings", on: pe.embedding_id == e.id)
|> Torus.semantic([p, pe, e], e.embedding, search_vector)
|> Repo.all()
end
高级参数
distance:指定距离计算方法(如:l2_distance)pre_filter:设置相似度阈值
性能优化建议
- 为嵌入向量列创建适当的索引
- 合理设置批处理大小和超时时间
- 对频繁查询的文本使用缓存
- 考虑使用分区表管理大量嵌入向量
- 监控API调用频率和成本
自定义扩展
Torus设计为高度可扩展,您可以:
- 实现自己的
Torus.Embedding行为 - 组合不同的嵌入模块
- 添加预处理/后处理逻辑
- 集成其他向量数据库服务
总结
通过Torus项目实现语义搜索,开发者可以:
- 轻松集成多种AI模型服务
- 灵活处理不同规模的文本数据
- 构建高性能、可扩展的语义搜索功能
- 根据需求定制整个处理流程
无论是初创项目还是大型应用,Torus都提供了从简单到高级的完整解决方案,帮助开发者快速实现基于语义的智能搜索功能。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C045
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0122
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 开源电子设计自动化利器:KiCad EDA全方位使用指南 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
699
162
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
696
374
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
675
Ascend Extension for PyTorch
Python
243
281
React Native鸿蒙化仓库
JavaScript
271
328