Kotlinx.serialization中处理复合对象反序列化的正确方式
2025-06-06 23:06:21作者:牧宁李
在Kotlinx.serialization库的实际应用中,开发者经常会遇到需要从单个JSON输入中反序列化多个对象的情况。本文将通过一个典型场景,深入解析如何正确实现复合对象的反序列化操作。
问题场景分析
假设我们需要处理一个包含两个独立数据结构的JSON对象:
{
"text": "Hello World",
"number": 123
}
对应的Kotlin数据类为:
data class Test(val text: String)
data class Test2(val number: Int)
data class CompositeObject(val test1: Test?, val test2: Test2?)
常见错误实现
许多开发者会尝试以下方式实现自定义序列化器:
object CompositeObjectSerializer : KSerializer<CompositeObject> {
override fun deserialize(decoder: Decoder): CompositeObject {
val test = Test.serializer().deserialize(decoder)
val test2 = Test2.serializer().deserialize(decoder)
return CompositeObject(test, test2)
}
// 其他方法省略...
}
这种实现会导致JsonDecodingException
异常,因为第一个deserialize
调用已经消费了整个输入流。
根本原因
Kotlinx.serialization的反序列化机制遵循"消费型"原则:
- 每个
deserialize
调用都会尝试消费完整的JSON对象(从{
到}
) - 第一个反序列化操作已经读取了整个输入流
- 后续反序列化操作将无数据可读
正确解决方案
方案一:使用JsonElement解析
override fun deserialize(decoder: Decoder): CompositeObject {
val jsonDecoder = decoder as? JsonDecoder ?: throw Error("仅支持JSON解码")
val element = jsonDecoder.decodeJsonElement()
val test = Json.decodeFromJsonElement(Test.serializer(), element)
val test2 = Json.decodeFromJsonElement(Test2.serializer(), element)
return CompositeObject(test, test2)
}
这种方法:
- 首先将整个JSON解析为内存中的JsonElement
- 然后分别从中提取所需部分
- 适用于结构不复杂的对象
方案二:实现完整的手动解析
override fun deserialize(decoder: Decoder): CompositeObject {
val composite = decoder.beginStructure(descriptor)
var text: String? = null
var number: Int? = null
while (true) {
when (composite.decodeElementIndex(descriptor)) {
CompositeObject.DECODE_DONE -> break
0 -> text = composite.decodeStringElement(descriptor, 0)
1 -> number = composite.decodeIntElement(descriptor, 1)
}
}
composite.endStructure(descriptor)
return CompositeObject(
text?.let { Test(it) },
number?.let { Test2(it) }
)
}
这种方法:
- 完全手动控制解析流程
- 性能更优,适合大型对象
- 需要正确定义descriptor
最佳实践建议
- 明确输入边界:理解每个反序列化操作都会消费完整输入
- 考虑使用JsonTransformingSerializer:对于简单转换场景更合适
- 合理选择方案:根据对象复杂度和性能需求选择解析方式
- 完整实现序列化:即使暂时不需要序列化,也应实现完整接口
通过理解Kotlinx.serialization的内部机制,开发者可以避免常见的反序列化陷阱,编写出更健壮、高效的代码。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00HunyuanWorld-Mirror
混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03Spark-Scilit-X1-13B
FLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
237
2.36 K

仓颉编程语言运行时与标准库。
Cangjie
122
95

暂无简介
Dart
538
117

仓颉编译器源码及 cjdb 调试工具。
C++
114
83

React Native鸿蒙化仓库
JavaScript
216
291

Ascend Extension for PyTorch
Python
77
109

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
995
588

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
568
113

LLVM 项目是一个模块化、可复用的编译器及工具链技术的集合。此fork用于添加仓颉编译器的功能,并支持仓颉编译器项目。
C++
32
25