Kotlinx.serialization中处理复合对象反序列化的正确方式
2025-06-06 00:46:32作者:牧宁李
在Kotlinx.serialization库的实际应用中,开发者经常会遇到需要从单个JSON输入中反序列化多个对象的情况。本文将通过一个典型场景,深入解析如何正确实现复合对象的反序列化操作。
问题场景分析
假设我们需要处理一个包含两个独立数据结构的JSON对象:
{
"text": "Hello World",
"number": 123
}
对应的Kotlin数据类为:
data class Test(val text: String)
data class Test2(val number: Int)
data class CompositeObject(val test1: Test?, val test2: Test2?)
常见错误实现
许多开发者会尝试以下方式实现自定义序列化器:
object CompositeObjectSerializer : KSerializer<CompositeObject> {
override fun deserialize(decoder: Decoder): CompositeObject {
val test = Test.serializer().deserialize(decoder)
val test2 = Test2.serializer().deserialize(decoder)
return CompositeObject(test, test2)
}
// 其他方法省略...
}
这种实现会导致JsonDecodingException异常,因为第一个deserialize调用已经消费了整个输入流。
根本原因
Kotlinx.serialization的反序列化机制遵循"消费型"原则:
- 每个
deserialize调用都会尝试消费完整的JSON对象(从{到}) - 第一个反序列化操作已经读取了整个输入流
- 后续反序列化操作将无数据可读
正确解决方案
方案一:使用JsonElement解析
override fun deserialize(decoder: Decoder): CompositeObject {
val jsonDecoder = decoder as? JsonDecoder ?: throw Error("仅支持JSON解码")
val element = jsonDecoder.decodeJsonElement()
val test = Json.decodeFromJsonElement(Test.serializer(), element)
val test2 = Json.decodeFromJsonElement(Test2.serializer(), element)
return CompositeObject(test, test2)
}
这种方法:
- 首先将整个JSON解析为内存中的JsonElement
- 然后分别从中提取所需部分
- 适用于结构不复杂的对象
方案二:实现完整的手动解析
override fun deserialize(decoder: Decoder): CompositeObject {
val composite = decoder.beginStructure(descriptor)
var text: String? = null
var number: Int? = null
while (true) {
when (composite.decodeElementIndex(descriptor)) {
CompositeObject.DECODE_DONE -> break
0 -> text = composite.decodeStringElement(descriptor, 0)
1 -> number = composite.decodeIntElement(descriptor, 1)
}
}
composite.endStructure(descriptor)
return CompositeObject(
text?.let { Test(it) },
number?.let { Test2(it) }
)
}
这种方法:
- 完全手动控制解析流程
- 性能更优,适合大型对象
- 需要正确定义descriptor
最佳实践建议
- 明确输入边界:理解每个反序列化操作都会消费完整输入
- 考虑使用JsonTransformingSerializer:对于简单转换场景更合适
- 合理选择方案:根据对象复杂度和性能需求选择解析方式
- 完整实现序列化:即使暂时不需要序列化,也应实现完整接口
通过理解Kotlinx.serialization的内部机制,开发者可以避免常见的反序列化陷阱,编写出更健壮、高效的代码。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
405
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355