Kotlinx.serialization中处理复合对象反序列化的正确方式
2025-06-06 23:06:21作者:牧宁李
在Kotlinx.serialization库的实际应用中,开发者经常会遇到需要从单个JSON输入中反序列化多个对象的情况。本文将通过一个典型场景,深入解析如何正确实现复合对象的反序列化操作。
问题场景分析
假设我们需要处理一个包含两个独立数据结构的JSON对象:
{
"text": "Hello World",
"number": 123
}
对应的Kotlin数据类为:
data class Test(val text: String)
data class Test2(val number: Int)
data class CompositeObject(val test1: Test?, val test2: Test2?)
常见错误实现
许多开发者会尝试以下方式实现自定义序列化器:
object CompositeObjectSerializer : KSerializer<CompositeObject> {
override fun deserialize(decoder: Decoder): CompositeObject {
val test = Test.serializer().deserialize(decoder)
val test2 = Test2.serializer().deserialize(decoder)
return CompositeObject(test, test2)
}
// 其他方法省略...
}
这种实现会导致JsonDecodingException异常,因为第一个deserialize调用已经消费了整个输入流。
根本原因
Kotlinx.serialization的反序列化机制遵循"消费型"原则:
- 每个
deserialize调用都会尝试消费完整的JSON对象(从{到}) - 第一个反序列化操作已经读取了整个输入流
- 后续反序列化操作将无数据可读
正确解决方案
方案一:使用JsonElement解析
override fun deserialize(decoder: Decoder): CompositeObject {
val jsonDecoder = decoder as? JsonDecoder ?: throw Error("仅支持JSON解码")
val element = jsonDecoder.decodeJsonElement()
val test = Json.decodeFromJsonElement(Test.serializer(), element)
val test2 = Json.decodeFromJsonElement(Test2.serializer(), element)
return CompositeObject(test, test2)
}
这种方法:
- 首先将整个JSON解析为内存中的JsonElement
- 然后分别从中提取所需部分
- 适用于结构不复杂的对象
方案二:实现完整的手动解析
override fun deserialize(decoder: Decoder): CompositeObject {
val composite = decoder.beginStructure(descriptor)
var text: String? = null
var number: Int? = null
while (true) {
when (composite.decodeElementIndex(descriptor)) {
CompositeObject.DECODE_DONE -> break
0 -> text = composite.decodeStringElement(descriptor, 0)
1 -> number = composite.decodeIntElement(descriptor, 1)
}
}
composite.endStructure(descriptor)
return CompositeObject(
text?.let { Test(it) },
number?.let { Test2(it) }
)
}
这种方法:
- 完全手动控制解析流程
- 性能更优,适合大型对象
- 需要正确定义descriptor
最佳实践建议
- 明确输入边界:理解每个反序列化操作都会消费完整输入
- 考虑使用JsonTransformingSerializer:对于简单转换场景更合适
- 合理选择方案:根据对象复杂度和性能需求选择解析方式
- 完整实现序列化:即使暂时不需要序列化,也应实现完整接口
通过理解Kotlinx.serialization的内部机制,开发者可以避免常见的反序列化陷阱,编写出更健壮、高效的代码。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
646
149
Ascend Extension for PyTorch
Python
207
220
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
653
286
React Native鸿蒙化仓库
JavaScript
250
318
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.13 K
637
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
78
101
仓颉编译器源码及 cjdb 调试工具。
C++
130
861
仓颉编程语言运行时与标准库。
Cangjie
134
873