kube-rs 0.92版本发布:显著优化内存使用与增强网络支持
kube-rs项目近期发布了0.92版本,这个版本带来了两个重要的改进:显著降低了运行时内存使用量,并增强了网络连接支持功能。这些改进使得这个Rust语言的Kubernetes客户端库在性能和可用性上都得到了提升。
运行时内存使用优化
新版本对watcher模块进行了重大改进,不再强制缓冲初始页面和初始化流数据。这是通过为watcher::Event新增了Init、InitApply和InitDone三种事件类型实现的。这些新事件类型在存储端被读取,同时保持了reflector和Store用户的原子性和就绪性保证。
这一改进带来了显著的内存使用量下降,特别是对于使用watcher的用户(无论是否使用存储)。根据基准测试显示,内存使用量有了明显减少。不过需要注意的是,这也带来了一个破坏性变更——watcher::Event的结构发生了变化。
对于普通用户来说,如果只是简单地使用watcher、reflector或Controller,通常不需要做任何修改。但如果使用了自定义存储或对watcher::Event进行了模式匹配,则需要进行相应的更新。对于编写自定义存储的用户来说,这些新信号将有助于改进缓存机制。
网络连接支持增强
在客户端方面,0.92版本新增了对网络连接的支持。这一功能通过http-proxy特性实现,它引入了hyper-http-proxy库,与已有的socks5代理功能形成了互补。这使得kube-rs在各种网络环境下的适应性更强,特别是在需要通过特定方式访问Kubernetes集群的场景下。
总结
kube-rs 0.92版本的这些改进使得这个Rust语言的Kubernetes客户端库更加成熟和实用。内存使用的优化对于资源敏感的应用场景尤为重要,而网络支持的增强则提升了库在各种网络环境下的可用性。这些改进都体现了kube-rs项目对性能和用户体验的持续关注。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0131
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00