推荐开源视频特征提取工具:快速且易用的解决方案
2024-05-22 07:26:12作者:平淮齐Percy
1、项目介绍
在深度学习领域,从视频中提取特征是一项基础但重要的任务,通常涉及到多个繁琐步骤。这个开源项目【Fast and Easy to use video feature extractor】正是为了简化这一过程而设计的。它提供了一个高效的Python脚本,能够直接对原始视频进行解码和特征提取,无需预先将视频帧保存到硬盘。这不仅提高了效率,也减轻了处理大量视频时可能面临的存储问题。
2、项目技术分析
该工具基于PyTorch框架实现,并依赖于ffmpeg-python库进行视频解码。它支持两种类型的模型:2D卷积网络(ResNet-152)和3D卷积网络(ResNeXt-101)。2D模型是预训练在ImageNet上的ResNet-152,可在每秒提取一个特征;而3D模型则是预训练在Kinetics数据集上的ResNeXt-101,每秒可提取1.5个特征。此外,项目还优化了多GPU并行处理,进一步提升了特征提取速度。
3、项目及技术应用场景
这款工具非常适合以下场景:
- 视频大数据集的预处理,如大规模视频理解任务的特征提取。
- 快速原型开发,研究人员可以在短时间内获取大量的视频特征用于实验。
- 教育与学习,教学如何利用深度学习对视频数据进行预处理和特征提取。
4、项目特点
- 便捷高效:只需提供一个CSV文件列出视频路径,脚本就会自动处理从解码到特征提取的全过程,无需额外步骤。
- 资源友好:避免了大量视频帧占用硬盘空间的问题,通过CPU解码线程节省系统资源。
- 多GPU支持:可以并行运行在多个GPU上,提升整体处理速度,且能智能检测未处理的视频。
- 模型多样:提供了2D和3D两种不同维度的CNN模型,满足不同的应用需求。
- 开箱即用:依赖项清晰,易于安装和使用。
使用指南
简单几步即可开始使用:
- 准备一个包含视频路径和对应特征输出路径的CSV文件。
- 运行
extract.py脚本,设置类型(2d或3d)、批大小和解码线程数。
例如:
python extract.py --csv=input.csv --type=2d --batch_size=64 --num_decoding_thread=4
一键完成特征提取。
总之,无论你是研究者还是开发者,这个开源项目都能帮你更轻松、更高效地处理视频数据的特征提取。立即尝试,体验它的强大与便利吧!
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0111
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
用Python打造高效自动升级系统,提升软件迭代体验【免费下载】 轻松在UOS ARM系统上安装VLC播放器:一键离线安装包推荐【亲测免费】 Minigalaxy:一个简洁的GOG客户端为Linux用户设计【亲测免费】 NewHorizonMod 项目使用教程【亲测免费】 Pentaho Data Integration (webSpoon) 项目推荐【免费下载】 探索荧光显微图像去噪的利器:FMD数据集与深度学习模型 v-network-graph 项目安装和配置指南【亲测免费】 免费开源的VR全身追踪系统:April-Tag-VR-FullBody-Tracker GooglePhotosTakeoutHelper 项目使用教程 sqlserver2pgsql 项目推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
485
3.59 K
Ascend Extension for PyTorch
Python
297
329
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
260
111
暂无简介
Dart
735
177
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
20
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
861
456
React Native鸿蒙化仓库
JavaScript
294
343
仓颉编译器源码及 cjdb 调试工具。
C++
148
880