《MRISA 安装与配置指南》
2025-04-21 03:57:45作者:廉皓灿Ida
1. 项目基础介绍
MRISA(Meta Reverse Image Search API)是一个基于RESTful API的元反向图片搜索工具。它接受一个图片URL作为输入,进行反向Google图片搜索,并返回一个包含搜索结果的JSON数组。该项目的目标是提供一种简单的方式来搜索和获取与给定图片相似的其他图片或信息。
主要编程语言:Python
2. 项目使用的关键技术和框架
- Flask: 一个轻量级的Web框架,用于创建RESTful API。
- PyCurl: 一个Python实现的libcurl库,用于执行HTTP请求。
- BeautifulSoup4: 一个用于解析HTML和XML文档的库,常用于网页抓取。
- lxml: 一个用于处理XML和HTML的Python库,提供快速的解析和搜索功能。
- requests: 一个简单的HTTP库,用于发送各种HTTP请求。
3. 项目安装和配置的准备工作与详细步骤
准备工作
- 确保您的系统已经安装了Python 3。
- 安装必要的依赖包:
pip install certifi flask pycurl beautifulsoup4 flask_cors requests lxml。
安装步骤
-
克隆项目仓库
在命令行中执行以下命令来克隆项目:
git clone https://github.com/vivithemage/mrisa.git -
安装依赖
进入项目目录,并安装
requirements.txt文件中列出的所有依赖:cd mrisa pip install -r requirements.txt -
运行项目
在项目目录中,运行以下命令来启动Flask服务器:
python src/server.pyFlask默认会在
http://localhost:5000上运行。 -
测试API
使用以下任一方式测试API是否正常工作:
-
CURL
curl -X POST http://localhost:5000/search \ -H "Content-Type: application/json" \ -d '{"image_url": "http://placehold.it/350x150.png", "resized_images": false}' -
Python requests
import requests import json url = "http://localhost:5000/search" data = { "image_url": "http://placehold.it/350x150.png", "resized_images": False } headers = { 'Content-type': 'application/json' } response = requests.post(url, headers=headers, data=json.dumps(data)) print(response.json())
-
注意事项
-
如果您在使用过程中遇到与
pycurl或lxml相关的问题,可能需要安装额外的依赖。对于基于Debian的系统,可以使用以下命令:sudo apt install libcurl4-openssl-dev libssl-dev sudo apt-get install libxml2-dev libxslt1-dev对于其他系统,您需要查找相应的包管理工具和依赖。
按照以上步骤,您应该能够成功安装和配置MRISA项目,并开始使用它来进行反向图片搜索。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
Ascend Extension for PyTorch
Python
240
276
暂无简介
Dart
696
163
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
269
328
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
674
仓颉编译器源码及 cjdb 调试工具。
C++
138
869