TinyLlama项目中的微调实践指南
2025-05-27 03:31:25作者:盛欣凯Ernestine
数据集预处理关键点
在TinyLlama项目中进行模型微调时,数据集的组织格式至关重要。根据项目代码分析,数据集需要包含两个关键字段:input和output。这两个字段分别代表了模型的输入文本和期望的输出文本。
正确的数据集格式示例如下:
{
'input': '用户输入的文本内容',
'output': '模型期望生成的回答内容'
}
数据预处理实现
预处理函数应当将原始数据转换为上述格式。假设原始数据是以制表符分隔的文本文件,预处理可以这样实现:
from datasets import load_dataset
def preprocess_function(examples):
parts = examples["text"].split("\t")
return {
"input": parts[0], # 第一部分作为输入
"output": parts[1] # 第二部分作为期望输出
}
# 加载并预处理数据集
dataset = load_dataset('text', data_files='your_data.txt')['train']
dataset = dataset.map(preprocess_function).remove_columns('text')
训练器配置详解
微调TinyLlama需要使用特定的训练器配置,核心在于正确设置数据整理器(DataCollator)。以下是关键配置步骤:
- 训练参数设置:
from transformers import TrainingArguments
training_args = TrainingArguments(
output_dir="./finetune_results", # 输出目录
num_train_epochs=1, # 训练轮数
per_device_train_batch_size=16, # 训练批次大小
per_device_eval_batch_size=64, # 评估批次大小
weight_decay=0.005, # 权重衰减系数
logging_dir="./logs", # 日志目录
remove_unused_columns=False # 保留未使用列
)
- 数据整理器实现: 数据整理器负责将文本数据转换为模型可处理的张量格式,核心功能包括:
- 添加特殊标记(BOS/EOS)
- 控制输入输出长度
- 处理填充和注意力掩码
from torch.nn.utils.rnn import pad_sequence
import torch
from dataclasses import dataclass
from typing import Dict, Sequence
import copy
@dataclass
class DataCollatorForCausalLM:
tokenizer: transformers.PreTrainedTokenizer
source_max_len: int = 128 # 输入最大长度
target_max_len: int = 128 # 输出最大长度
train_on_source: bool = True # 是否在源文本上训练
predict_with_generate: bool = False # 是否生成式预测
def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]:
# 添加特殊标记并分词
sources = [f"{self.tokenizer.bos_token}{x['input']}" for x in instances]
targets = [f"{x['output']}{self.tokenizer.eos_token}" for x in instances]
# 分词处理
tokenized_sources = self.tokenizer(
sources, max_length=self.source_max_len,
truncation=True, add_special_tokens=False
)
tokenized_targets = self.tokenizer(
targets, max_length=self.target_max_len,
truncation=True, add_special_tokens=False
)
# 构建模型输入和标签
input_ids, labels = [], []
for src, tgt in zip(tokenized_sources['input_ids'], tokenized_targets['input_ids']):
input_ids.append(torch.tensor(src + tgt))
if not self.train_on_source:
labels.append(torch.tensor(
[IGNORE_INDEX]*len(src) + tgt.copy()
))
else:
labels.append(torch.tensor(src + tgt.copy()))
# 填充处理
input_ids = pad_sequence(input_ids, batch_first=True,
padding_value=self.tokenizer.pad_token_id)
labels = pad_sequence(labels, batch_first=True,
padding_value=IGNORE_INDEX)
return {
'input_ids': input_ids,
'attention_mask': input_ids.ne(self.tokenizer.pad_token_id),
'labels': labels
}
完整训练流程
结合上述组件,完整的微调流程如下:
from transformers import Seq2SeqTrainer
# 初始化数据整理器
data_collator = DataCollatorForCausalLM(
tokenizer=tokenizer,
source_max_len=128,
target_max_len=128,
train_on_source=True
)
# 创建训练器
trainer = Seq2SeqTrainer(
model=model,
tokenizer=tokenizer,
args=training_args,
train_dataset=dataset,
data_collator=data_collator
)
# 开始训练
trainer.train()
常见问题解决方案
-
数据类型错误:确保预处理后的数据是文本格式,而非其他类型对象。
-
索引越界错误:检查数据分割逻辑是否正确,确保每行数据都包含input和output两部分。
-
特殊标记处理:根据使用的tokenizer确认BOS(开始)和EOS(结束)标记是否正确添加。
-
长度控制:合理设置source_max_len和target_max_len参数,避免输入过长被截断或过短浪费资源。
通过以上步骤,开发者可以成功地在TinyLlama项目上实现模型的微调。关键在于理解数据流向:从原始文本→预处理→分词→训练这一完整流程,每个环节都需要正确配置才能保证训练顺利进行。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
348
414
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
609
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
185
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
252
openGauss kernel ~ openGauss is an open source relational database management system
C++
169
233
暂无简介
Dart
778
193
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
758
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
114
140