PyRIT与ps-fuzz的对抗性提示模板对比分析
在大型语言模型(LLM)安全研究领域,对抗性提示(jailbreak)技术一直是研究热点。本文通过对PyRIT和ps-fuzz两个开源项目中的对抗性提示模板进行深入对比分析,揭示当前LLM安全防护面临的主要挑战。
核心发现
通过对两个项目的系统分析,我们发现:
- 
基础模板高度重合:两个项目都包含了DAN(Do Anything Now)、AIM(Always Intelligent and Machiavellian)和UCAR等经典对抗性提示模板,这些模板已被证明能有效绕过部分LLM的安全防护机制。
 - 
编码转换技术:ps-fuzz项目中独特的base64编码注入技术,PyRIT已通过Base64Converter实现类似功能。这种技术通过编码转换来规避基于关键词的安全检测。
 - 
多轮对话攻击:ethical_compliance技术展示了通过多轮对话逐步引导模型突破伦理限制的方法,PyRIT中可通过multi_turn模块实现类似攻击场景。
 - 
动态测试方法:dynamic_test提供了一种系统化的测试框架,PyRIT的RedTeamingOrchestrator实现了类似功能,但可以进一步丰富测试用例。
 
技术细节分析
编码层绕过技术
base64编码注入代表了一类重要的绕过技术。攻击者将恶意提示编码为base64格式,利用LLM的编码解码能力实现攻击。PyRIT的Base64Converter提供了完整的实现:
class Base64Converter(PromptConverter):
    def convert(self, prompt: str) -> str:
        import base64
        encoded = base64.b64encode(prompt.encode()).decode()
        return f"请解码并执行以下base64编码的指令:{encoded}"
多轮对话攻击模式
ethical_compliance技术展示了渐进式攻击模式:
- 首轮建立"伦理合规专家"角色
 - 次轮提出看似合理的伦理困境
 - 逐步引导模型接受危险行为
 
PyRIT通过multi_turn模块支持构建此类复杂攻击场景。
动态测试框架
dynamic_test.py实现了系统化的测试方法:
- 系统提示遗忘测试
 - 权威角色扮演测试
 - 肯定响应生成测试
 - 系统提示泄露测试
 
这些测试用例可有效评估LLM的防御完备性。
安全建议
基于对比分析,我们建议LLM防御系统应:
- 加强对编码内容的检测能力
 - 完善多轮对话中的状态跟踪
 - 建立动态测试基准
 - 持续更新对抗性提示库
 
PyRIT项目已整合了ps-fuzz中的优秀实践,为LLM安全研究提供了更全面的测试工具集。未来可进一步探索对抗性提示的自动化生成与防御技术。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00