Kachaka机器人Python API开发指南
2025-06-10 23:48:07作者:盛欣凯Ernestine
前言
Kachaka是一款智能移动机器人平台,为开发者提供了丰富的API接口。本文将详细介绍如何使用Python语言与Kachaka机器人进行交互,包括安装配置、基础使用、示例代码以及高级异步编程等内容。
环境准备
安装Python库
Kachaka官方提供了kachaka-api Python库,支持Python 3.7及以上版本。安装方式有以下两种:
- 使用pip安装(推荐):
pip install kachaka-api
- 使用uv安装:
uv add kachaka-api
版本说明
kachaka-api库的版本号采用四段式:
- 前三段对应Kachaka固件版本号
- 第四段为API库自身的修订号
例如版本3.10.6.0表示:
- 适配Kachaka固件3.10.6
- API库初始发布版本
当API库有重要更新时,第四位数字会递增(如3.10.6.1)。
基础使用
连接机器人
首先需要创建API客户端实例,指定机器人的IP地址和端口:
from kachaka_api import KachakaApiClient
# 替换为实际机器人IP
client = KachakaApiClient(target="192.168.1.100:26400")
常用API示例
- 获取机器人当前位置:
current_pose = client.get_robot_pose()
print(f"当前坐标: {current_pose}")
- 让机器人说话:
client.speak("你好,我是Kachaka机器人")
- 移动控制:
# 前往指定位置
client.move_to_location("厨房")
# 返回充电座
client.return_home()
交互式开发
推荐使用Jupyter Notebook进行交互式开发,官方提供了完整的API示例笔记本:
kachaka_api_client.ipynb:包含所有同步API的调用示例kachaka_api_client_async.ipynb:异步API调用示例
这些笔记本详细演示了每个API的使用方法,是学习API的最佳起点。
异步编程接口
对于需要高效处理多个任务的场景,Kachaka提供了异步API接口:
import asyncio
from kachaka_api.aio import KachakaApiClient
async def main():
client = KachakaApiClient(target="192.168.1.100:26400")
# 异步获取状态
pose = await client.get_robot_pose()
print(f"当前位置: {pose}")
# 异步执行命令
await client.speak("正在处理任务")
asyncio.run(main())
异步接口的优势:
- 支持回调机制,可实时响应机器人状态变化
- 适合需要并发处理多个任务的场景
- 与Python异步生态(如FastAPI等)无缝集成
示例项目
官方提供了多个实用示例,帮助开发者快速上手:
-
LLM语音交互示例:
- 集成ChatGPT等大语言模型
- 实现任务完成时的智能语音反馈
- 演示了回调机制的使用
-
导航控制示例:
- 展示位置标记与路径规划
- 包含避障和重试逻辑
-
状态监控示例:
- 实时显示机器人传感器数据
- 电池状态和任务队列监控
最佳实践
- 错误处理:
try:
client.move_to_location("卧室")
except KachakaApiError as e:
print(f"移动失败: {e}")
- 状态检查:
while not client.get_command_state().is_done:
print("任务执行中...")
time.sleep(1)
- 资源管理:
with KachakaApiClient(target="192.168.1.100:26400") as client:
# 使用客户端
client.speak("连接已建立")
总结
Kachaka Python API提供了从基础控制到高级编程的完整接口,开发者可以:
- 快速实现机器人基础功能
- 构建复杂的自动化流程
- 集成AI能力打造智能应用
- 通过异步编程优化性能
建议初学者从官方示例笔记本开始,逐步探索API的各种可能性。对于高级用户,异步接口和回调机制为实现复杂业务逻辑提供了强大支持。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
754
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
179
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248