Neuron 2.11.3 版本发布:优化内存使用与设备兼容性
Neuron 是一款开源的工业物联网边缘数据采集工具,专注于为工业设备提供高效、稳定的数据连接能力。作为工业4.0和智能制造领域的重要基础设施,Neuron 能够连接各类工业协议设备,实现数据的采集、转换和传输。
核心改进与优化
最新发布的 Neuron 2.11.3 版本带来了多项重要改进,主要集中在性能优化和设备兼容性方面:
1. 稳定性修复
修复了当多个北向应用订阅相同南向设备时可能导致的崩溃问题。这一改进显著提升了系统在多订阅场景下的稳定性,特别是在复杂的工业物联网环境中,当多个上层应用需要访问相同设备数据时,系统能够保持稳定运行。
2. 内存使用优化
针对数组类型进行了内存使用优化。在工业数据采集中,数组类型数据十分常见,如批量寄存器读取等场景。通过优化内存管理,新版本能够更高效地处理大量数组数据,降低系统资源占用,这对于资源受限的边缘计算设备尤为重要。
3. AB 5000 适配增强
改进了对某些不支持多服务的 AB 5000 系列设备的适配能力。Allen-Bradley 5000 系列是工业自动化领域广泛使用的控制器,此次优化使得 Neuron 能够更好地兼容这些设备的特定限制,扩展了产品的适用场景。
4. Modbus 数据类型支持增强
在 Modbus 协议支持方面,新版本增强了对 Double/Int64/Uint64 数据类型的字节序配置支持。Modbus 是工业领域最常用的通信协议之一,不同厂商设备对数据类型的字节序处理可能存在差异。这一改进使得 Neuron 能够更灵活地适配各种设备的数据格式要求,提高了数据采集的准确性。
技术价值与应用意义
Neuron 2.11.3 版本的这些改进虽然看似细节,但对于工业物联网应用具有实际价值:
-
系统稳定性提升:修复的崩溃问题确保了关键工业应用场景下的连续可靠运行。
-
资源效率优化:内存使用优化使得 Neuron 能够在资源受限的边缘设备上更高效运行,降低硬件成本。
-
设备兼容性扩展:对特定设备的适配改进扩大了 Neuron 的适用范围,使其能够连接更多类型的工业设备。
-
数据准确性增强:Modbus 数据类型支持的完善减少了数据解析错误的风险,确保采集数据的准确性。
这些改进共同提升了 Neuron 在工业物联网边缘计算场景中的表现,使其成为连接工业设备与上层应用的更可靠桥梁。对于工业自动化、智能制造等领域的用户而言,升级到新版本将获得更稳定、更高效的设备数据采集体验。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
pc-uishopTNT开源商城系统使用java语言开发,基于SpringBoot架构体系构建的一套b2b2c商城,商城是满足集平台自营和多商户入驻于一体的多商户运营服务系统。包含PC 端、手机端(H5\APP\小程序),系统架构以及实现案例中应满足和未来可能出现的业务系统进行对接。Vue00
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX01