Great Expectations 数据验证:范围验证与计算列处理实践
2025-05-22 07:18:30作者:贡沫苏Truman
在数据质量保障领域,范围验证(如大于、小于等比较操作)是最基础也最常用的验证手段之一。作为专业的数据质量工具,Great Expectations 提供了完善的解决方案来处理这类需求,同时也支持更复杂的计算列验证场景。
一、基础范围验证实现
Great Expectations 通过内置的 expect_column_values_to_be_between 验证器原生支持数值范围验证。该验证器可以同时设置上下界,实现三种典型场景:
- 单边验证(如大于100):
validator.expect_column_values_to_be_between(
column="price",
min_value=100,
strict_min=True # 表示不包含边界值100
)
- 区间验证(如20-100之间):
validator.expect_column_values_to_be_between(
column="age",
min_value=20,
max_value=100
)
- 无限区间(如小于等于500):
validator.expect_column_values_to_be_between(
column="score",
max_value=500
)
二、计算列验证方案
对于需要验证派生列的场景(如C列=A列×B列),虽然系统没有预置验证器,但可以通过以下两种方式实现:
方案1:临时列+标准验证
# 先创建临时计算列
df["temp_calc"] = df["column_a"] * df["column_b"]
# 然后验证计算列与目标列一致
validator.expect_column_pair_values_to_be_equal(
column_A="temp_calc",
column_B="column_c"
)
方案2:自定义验证器(推荐生产环境使用)
通过继承 Expectation 基类开发定制验证器,可以封装复杂的业务逻辑:
class ExpectColumnProductToEqual(ColumnPairMapExpectation):
# 实现核心计算逻辑
def _validate(self, configuration, runtime_configuration):
actual = df[column_A] * df[column_B]
expected = df[column_C]
return {
"success": actual.equals(expected),
"result": {"observed_value": "Product validation"}
}
三、最佳实践建议
- 性能优化:对于大数据量验证,建议优先使用Pandas/Spark的原生向量化计算
- 验证组合:将基础验证与计算验证结合使用,先验证源数据质量再验证计算逻辑
- 异常处理:特别注意处理除零、空值等边界情况
- 文档化:为自定义验证器添加详细的元数据描述
通过合理运用这些方法,可以构建覆盖从简单到复杂各种场景的完整数据验证体系。对于需要频繁使用的计算验证逻辑,建议将其封装为可复用的自定义验证器,这对团队协作和长期维护都大有裨益。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C067
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
458
3.42 K
暂无简介
Dart
710
170
Ascend Extension for PyTorch
Python
265
299
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
182
67
React Native鸿蒙化仓库
JavaScript
284
332
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
838
415
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
431
130
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
103
118