CogStack OpenGPT 使用教程
2024-09-23 16:38:30作者:宣聪麟
项目概述
CogStack OpenGPT 是一个用于构建基于指令的有实证数据集并训练医疗领域对话专家大型语言模型(LLMs)的框架。此项目特别强调在特定领域内创建高质量的对话训练数据,并且已经在医疗健康领域得到应用,如NHS-LLM,一个通过OpenGPT训练的医疗健康对话模型。
目录结构及介绍
下面是CogStack OpenGPT的基本目录结构及每个主要部分的简介:
.
├── configs # 配置文件夹,存放数据集生成和模型训练的相关配置
│ └── ...
├── data # 存放生成的或原始的数据集
│ ├── NHS_UK_Q&A.csv # 示例:英国国家医疗服务体系问答对
│ ├── NHS_UK_Conversations.csv # 示例:对话样本
│ └── ...
├── experiments # 实验相关文件,可能包括不同模型训练的日志等
│ └── ...
├── opengpt # 主代码库,包含核心函数和类定义
│ └── __init__.py
├── README.md # 项目说明文档
├── llama_train_requirements.txt # 训练LLaMA模型所需的额外依赖清单
├── requirements.txt # 项目基本依赖列表
├── setup.py # 安装脚本
└── ...
项目的启动文件介绍
虽然直接的“启动文件”概念在开源项目中可能较为灵活,但使用CogStack OpenGPT通常从安装开始,接着通过配置和运行脚本来执行特定任务。没有明确标记为“启动”的单个文件,但是setup.py
用于安装项目依赖,而项目的实际操作是通过调用Python脚本或Jupyter Notebook中的命令来实现,比如数据预处理、生成任务、训练模型等。
项目的配置文件介绍
配置文件主要位于configs
目录下,这些文件对数据生成和模型训练过程至关重要。配置文件通常包含了以下信息:
- 数据源设置:指定基础数据集的路径或URL。
- 指令模板(Prompts):用于生成任务或对话场景的具体文本指令。
- 模型训练参数:包括批次大小、学习率、训练轮数等。
- 输出设置:数据生成后的存储位置和格式。
例如,编辑一个配置文件以添加适当的提示和数据集,然后使用这个配置来驱动数据生成流程,是开始使用此框架的关键步骤。
安装与初步使用
首先,确保具备Python环境,然后安装项目及其必要依赖:
pip install opengpt
pip install -r llama_train_requirements.txt # 如果要处理特定类型模型
接下来,参考项目内的教程或Notebook(如“Dataset generation notebook”、“train notebook”)进行具体的配置和数据处理流程,以逐步深入到模型训练和应用阶段。
本教程仅提供了一个高层次的概览。深入理解每个配置项和脚本的具体功能,以及阅读项目文档和示例,对于完全掌握如何使用CogStack OpenGPT至关重要。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~058CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0382- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
49
337

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
348
382

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
872
517

React Native鸿蒙化仓库
C++
179
263

openGauss kernel ~ openGauss is an open source relational database management system
C++
131
184

deepin linux kernel
C
22
5

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
335
1.09 K

harmony-utils 一款功能丰富且极易上手的HarmonyOS工具库,借助众多实用工具类,致力于助力开发者迅速构建鸿蒙应用。其封装的工具涵盖了APP、设备、屏幕、授权、通知、线程间通信、弹框、吐司、生物认证、用户首选项、拍照、相册、扫码、文件、日志,异常捕获、字符、字符串、数字、集合、日期、随机、base64、加密、解密、JSON等一系列的功能和操作,能够满足各种不同的开发需求。
ArkTS
32
0

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.08 K
0