Caffeine项目中的Spring Boot缓存代理机制解析
2025-05-13 07:18:16作者:牧宁李
在Spring Boot应用中使用Caffeine作为缓存解决方案时,开发者经常会遇到一个典型问题:明明正确配置了@Cacheable注解,但缓存功能却未生效。本文将通过一个实际案例,深入分析这一现象背后的原因及其解决方案。
问题现象
开发者在Spring Boot 3应用中配置了Caffeine缓存,主要包含以下关键组件:
- 缓存配置类:通过
@EnableCaching启用了缓存功能,并创建了Caffeine缓存管理器 - 服务类:在方法上添加了
@Cacheable(value = "TokenCache", key="#user")注解 - 应用配置:在application.yaml中明确指定了缓存类型为caffeine
尽管配置看似完整,但实际运行时发现:
- 缓存管理器初始化日志显示正常
- 每次方法调用都执行了实际业务逻辑(获取新token)
- 缓存内容始终为空
根本原因分析
经过排查,发现问题出在Spring AOP代理机制上。当开发者在一个类内部直接调用带有@Cacheable注解的方法时,Spring的代理机制无法介入,导致缓存功能失效。
Spring的缓存功能基于AOP实现,而AOP代理只能拦截跨类调用。当类内部方法相互调用时,实际上是在调用原始对象的方法,而非代理对象的方法,因此缓存拦截器不会被触发。
解决方案
要解决这个问题,有以下几种方法:
- 最佳实践:将缓存方法提取到单独的服务类中,通过依赖注入调用
- 自注入方案:在当前类中注入自身代理实例
- 配置调整:使用
@EnableAspectJAutoProxy(exposeProxy = true)暴露代理
推荐采用第一种方案,代码结构调整如下:
@Service
public class TokenService {
@Cacheable(value = "TokenCache", key="#user")
public String getSwiftStackTokenCache(String user) {
// 获取token的实现
}
}
@Service
public class CloningInstanceService {
@Autowired
private TokenService tokenService;
public void someMethod() {
// 通过注入的service调用缓存方法
String token = tokenService.getSwiftStackTokenCache(user);
}
}
技术原理深入
Spring的缓存功能实现依赖于以下技术栈:
- 代理模式:Spring通过JDK动态代理或CGLIB为Bean创建代理
- 拦截器链:缓存注解会生成对应的拦截器,在方法调用前后处理缓存逻辑
- AOP切面:
@Cacheable等注解实际上是一种声明式AOP
当调用流程为:外部类 → 代理对象 → 目标方法时,缓存拦截器能够正常工作。但当调用发生在类内部时,流程变为:目标对象 → 目标方法,跳过了代理层,导致缓存失效。
配置优化建议
除了解决代理问题外,Caffeine缓存配置还可以进一步优化:
- 精细化过期策略:结合使用
expireAfterWrite和expireAfterAccess - 监控集成:添加记录器统计缓存命中率
- 分层缓存:考虑多级缓存架构应对不同场景
@Bean
public Caffeine<Object, Object> caffeineConfig() {
return Caffeine.newBuilder()
.maximumSize(1000)
.expireAfterWrite(10, TimeUnit.MINUTES)
.expireAfterAccess(5, TimeUnit.MINUTES)
.recordStats()
.initialCapacity(100);
}
总结
在使用Caffeine作为Spring Boot缓存解决方案时,开发者不仅需要正确配置缓存参数,还需要理解Spring的AOP代理机制。内部方法调用导致的缓存失效是一个常见陷阱,通过合理的代码结构设计和关注点分离,可以确保缓存功能按预期工作。掌握这些原理后,开发者能够更高效地利用Caffeine构建高性能的缓存层。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
pc-uishopTNT开源商城系统使用java语言开发,基于SpringBoot架构体系构建的一套b2b2c商城,商城是满足集平台自营和多商户入驻于一体的多商户运营服务系统。包含PC 端、手机端(H5\APP\小程序),系统架构以及实现案例中应满足和未来可能出现的业务系统进行对接。Vue00
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX01
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
540
3.77 K
Ascend Extension for PyTorch
Python
351
417
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
614
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
185
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
988
253
openGauss kernel ~ openGauss is an open source relational database management system
C++
169
233
暂无简介
Dart
778
193
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
115
141
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.35 K
758