Thi.ng Memoize 库中的异步函数缓存优化实践
2025-06-20 23:07:32作者:龚格成
背景介绍
在函数式编程中,memoize(记忆化)是一种常见的性能优化技术,它通过缓存函数调用的结果来避免重复计算。当相同的输入再次出现时,直接从缓存中返回结果,而不是重新执行函数。这对于计算密集型或IO密集型的操作特别有用。
问题发现
在使用Thi.ng Memoize库时,我们发现了一个关于异步函数缓存的特殊问题:当Promise被拒绝时,原始的memoize实现会缓存这个被拒绝的Promise。这意味着后续相同的调用会立即得到相同的拒绝结果,而不是重新尝试执行函数。
这种情况在某些场景下可能不是我们期望的行为。例如,当函数执行失败是由于临时性错误(如网络问题)导致时,我们可能希望在下次调用时重试,而不是直接返回之前的失败结果。
问题示例
考虑以下场景:
// 模拟一个会在指定时间后拒绝的Promise
function rejectAfterDelay(ms?: number) {
return new Promise((_, reject) => setTimeout(reject, ms))
}
// 使用memoizeO缓存异步函数
const memoizedAsyncFn = memoizeO(async (delay: number) => {
console.log('executing')
await rejectAfterDelay(delay)
})
// 第一次调用,2秒后拒绝
await memoizedAsyncFn(2000).catch(() => console.log('Failure 1'))
// 第二次调用相同的参数
// 会立即返回之前缓存的拒绝Promise,而不是等待2秒
await memoizedAsyncFn(2000).catch(() => console.log('Failure 2 without delay'))
解决方案
Thi.ng Memoize库在4.0.0版本中引入了专门的异步memoize函数(如memoizeAsyncO),这些新函数会在Promise被拒绝时自动跳过缓存。这样,当下次使用相同参数调用时,函数会重新执行而不是返回缓存的拒绝结果。
实现原理
新的异步memoize函数的核心改进在于:
- 仍然使用相同的缓存机制来存储Promise
- 但当Promise被拒绝时,会从缓存中删除对应的条目
- 这样下次调用就会创建新的Promise并重新执行函数
这种实现方式既保持了memoize的性能优势,又避免了缓存失败结果带来的问题。
使用建议
对于异步函数,现在推荐使用专门的异步memoize函数,如:
- memoizeAsyncO:对象参数版本的异步memoize
- memoizeAsync1:单参数版本的异步memoize
- 其他对应版本的异步memoize函数
这些函数的使用方式与原始版本相同,但提供了更合理的错误处理行为。
总结
Thi.ng Memoize库的异步memoize改进展示了函数缓存技术在实际应用中的细致考量。通过区分同步和异步场景,并为异步操作提供专门的缓存策略,开发者可以更安全地在项目中应用memoize优化,特别是在涉及可能失败的异步操作时。这一改进使得Thi.ng Memoize库在保持高性能的同时,提供了更符合开发者预期的行为。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00HunyuanWorld-Mirror
混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00Spark-Scilit-X1-13B
FLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
235
2.33 K

仓颉编译器源码及 cjdb 调试工具。
C++
113
79

暂无简介
Dart
536
117

React Native鸿蒙化仓库
JavaScript
216
291

Ascend Extension for PyTorch
Python
76
106

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
993
588

仓颉编程语言测试用例。
Cangjie
34
63

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
130
650