Thi.ng Memoize 库中的异步函数缓存优化实践
2025-06-20 23:07:32作者:龚格成
背景介绍
在函数式编程中,memoize(记忆化)是一种常见的性能优化技术,它通过缓存函数调用的结果来避免重复计算。当相同的输入再次出现时,直接从缓存中返回结果,而不是重新执行函数。这对于计算密集型或IO密集型的操作特别有用。
问题发现
在使用Thi.ng Memoize库时,我们发现了一个关于异步函数缓存的特殊问题:当Promise被拒绝时,原始的memoize实现会缓存这个被拒绝的Promise。这意味着后续相同的调用会立即得到相同的拒绝结果,而不是重新尝试执行函数。
这种情况在某些场景下可能不是我们期望的行为。例如,当函数执行失败是由于临时性错误(如网络问题)导致时,我们可能希望在下次调用时重试,而不是直接返回之前的失败结果。
问题示例
考虑以下场景:
// 模拟一个会在指定时间后拒绝的Promise
function rejectAfterDelay(ms?: number) {
return new Promise((_, reject) => setTimeout(reject, ms))
}
// 使用memoizeO缓存异步函数
const memoizedAsyncFn = memoizeO(async (delay: number) => {
console.log('executing')
await rejectAfterDelay(delay)
})
// 第一次调用,2秒后拒绝
await memoizedAsyncFn(2000).catch(() => console.log('Failure 1'))
// 第二次调用相同的参数
// 会立即返回之前缓存的拒绝Promise,而不是等待2秒
await memoizedAsyncFn(2000).catch(() => console.log('Failure 2 without delay'))
解决方案
Thi.ng Memoize库在4.0.0版本中引入了专门的异步memoize函数(如memoizeAsyncO),这些新函数会在Promise被拒绝时自动跳过缓存。这样,当下次使用相同参数调用时,函数会重新执行而不是返回缓存的拒绝结果。
实现原理
新的异步memoize函数的核心改进在于:
- 仍然使用相同的缓存机制来存储Promise
- 但当Promise被拒绝时,会从缓存中删除对应的条目
- 这样下次调用就会创建新的Promise并重新执行函数
这种实现方式既保持了memoize的性能优势,又避免了缓存失败结果带来的问题。
使用建议
对于异步函数,现在推荐使用专门的异步memoize函数,如:
- memoizeAsyncO:对象参数版本的异步memoize
- memoizeAsync1:单参数版本的异步memoize
- 其他对应版本的异步memoize函数
这些函数的使用方式与原始版本相同,但提供了更合理的错误处理行为。
总结
Thi.ng Memoize库的异步memoize改进展示了函数缓存技术在实际应用中的细致考量。通过区分同步和异步场景,并为异步操作提供专门的缓存策略,开发者可以更安全地在项目中应用memoize优化,特别是在涉及可能失败的异步操作时。这一改进使得Thi.ng Memoize库在保持高性能的同时,提供了更符合开发者预期的行为。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
暂无简介
Dart
774
192
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
756
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
249