深入理解Python中的深浅拷贝 - pytips项目解析
2025-06-10 09:47:31作者:翟萌耘Ralph
引言
在Python编程中,理解对象的复制机制对于避免潜在错误至关重要。本文将深入探讨Python中的赋值、浅拷贝和深拷贝概念,帮助开发者掌握这些核心知识点。
Python对象的基本特性
Python中的所有事物都是对象,这些对象可以分为两大类:
- 不可变对象(immutable):包括int、float、str、tuple等
- 可变对象(mutable):包括list、set、dict等
Python的赋值操作(=)实际上只是创建了一个指向对象的引用,而不是复制对象本身。这类似于C语言中的指针概念,但更加灵活。
直接赋值的陷阱
original_list = [1, 2, 3]
new_list = original_list
new_list.pop()
print(original_list) # 输出: [1, 2]
在这个例子中,new_list和original_list指向同一个列表对象,因此通过任一引用修改列表都会影响另一个引用。
浅拷贝(Shallow Copy)的解决方案
为了避免上述问题,我们可以使用浅拷贝创建新的对象:
original_list = [1, 2, 3]
# 多种浅拷贝方法
copies = [
original_list[:], # 切片操作
original_list.copy(), # copy()方法
list(original_list), # 类型构造函数
[*original_list] # 解包操作(Python 3.5+)
]
for i, copy in enumerate(copies):
copy.append(f"#{i}")
print(original_list) # 输出: [1, 2, 3]
浅拷贝对于简单的一维数据结构工作得很好,但当遇到嵌套结构时,问题就出现了。
浅拷贝的局限性
nested_list = [0, 1, [2, 3]]
shallow_copies = [
nested_list[:],
nested_list.copy(),
list(nested_list)
]
for i, copy in enumerate(shallow_copies):
copy[2].append(f"#{i}")
print(nested_list) # 输出: [0, 1, [2, 3, '#0', '#1', '#2']]
可以看到,虽然外层列表是新创建的,但内层的嵌套列表仍然是共享的引用。
深拷贝(Deep Copy)的全面解决方案
为了解决嵌套结构的复制问题,我们需要使用深拷贝:
from copy import deepcopy
original_nested = [0, 1, [2, 3]]
deep_copy = deepcopy(original_nested)
deep_copy[2].append(4)
print(deep_copy) # 输出: [0, 1, [2, 3, 4]]
print(original_nested) # 输出: [0, 1, [2, 3]]
深拷贝会递归地复制所有嵌套对象,确保完全独立的新对象被创建。
实际应用场景
- 函数参数传递:当传递可变对象给函数时,如果不希望修改原始对象,应该使用拷贝
- 数据保护:当需要保护原始数据不被意外修改时
- 模板模式:当基于现有对象创建新实例时
性能考量
- 浅拷贝:速度快,内存消耗少
- 深拷贝:速度慢,内存消耗大(特别是对于大型嵌套结构)
在实际开发中,应根据具体需求选择合适的拷贝方式。
总结
理解Python中的深浅拷贝机制对于编写健壮的代码至关重要。关键点总结:
- 赋值操作只是创建引用,不复制对象
- 浅拷贝创建新对象,但共享嵌套引用
- 深拷贝递归复制所有嵌套对象
- 根据实际需求选择合适的拷贝方式
掌握这些概念可以帮助开发者避免许多常见的Python陷阱,写出更可靠、更易维护的代码。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
645
149
Ascend Extension for PyTorch
Python
207
221
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
653
286
React Native鸿蒙化仓库
JavaScript
250
317
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.13 K
637
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
78
101
仓颉编译器源码及 cjdb 调试工具。
C++
130
861
仓颉编程语言运行时与标准库。
Cangjie
134
873