深入理解Python中的深浅拷贝 - pytips项目解析
2025-06-10 13:30:53作者:翟萌耘Ralph
引言
在Python编程中,理解对象的复制机制对于避免潜在错误至关重要。本文将深入探讨Python中的赋值、浅拷贝和深拷贝概念,帮助开发者掌握这些核心知识点。
Python对象的基本特性
Python中的所有事物都是对象,这些对象可以分为两大类:
- 不可变对象(immutable):包括int、float、str、tuple等
- 可变对象(mutable):包括list、set、dict等
Python的赋值操作(=)实际上只是创建了一个指向对象的引用,而不是复制对象本身。这类似于C语言中的指针概念,但更加灵活。
直接赋值的陷阱
original_list = [1, 2, 3]
new_list = original_list
new_list.pop()
print(original_list) # 输出: [1, 2]
在这个例子中,new_list和original_list指向同一个列表对象,因此通过任一引用修改列表都会影响另一个引用。
浅拷贝(Shallow Copy)的解决方案
为了避免上述问题,我们可以使用浅拷贝创建新的对象:
original_list = [1, 2, 3]
# 多种浅拷贝方法
copies = [
original_list[:], # 切片操作
original_list.copy(), # copy()方法
list(original_list), # 类型构造函数
[*original_list] # 解包操作(Python 3.5+)
]
for i, copy in enumerate(copies):
copy.append(f"#{i}")
print(original_list) # 输出: [1, 2, 3]
浅拷贝对于简单的一维数据结构工作得很好,但当遇到嵌套结构时,问题就出现了。
浅拷贝的局限性
nested_list = [0, 1, [2, 3]]
shallow_copies = [
nested_list[:],
nested_list.copy(),
list(nested_list)
]
for i, copy in enumerate(shallow_copies):
copy[2].append(f"#{i}")
print(nested_list) # 输出: [0, 1, [2, 3, '#0', '#1', '#2']]
可以看到,虽然外层列表是新创建的,但内层的嵌套列表仍然是共享的引用。
深拷贝(Deep Copy)的全面解决方案
为了解决嵌套结构的复制问题,我们需要使用深拷贝:
from copy import deepcopy
original_nested = [0, 1, [2, 3]]
deep_copy = deepcopy(original_nested)
deep_copy[2].append(4)
print(deep_copy) # 输出: [0, 1, [2, 3, 4]]
print(original_nested) # 输出: [0, 1, [2, 3]]
深拷贝会递归地复制所有嵌套对象,确保完全独立的新对象被创建。
实际应用场景
- 函数参数传递:当传递可变对象给函数时,如果不希望修改原始对象,应该使用拷贝
- 数据保护:当需要保护原始数据不被意外修改时
- 模板模式:当基于现有对象创建新实例时
性能考量
- 浅拷贝:速度快,内存消耗少
- 深拷贝:速度慢,内存消耗大(特别是对于大型嵌套结构)
在实际开发中,应根据具体需求选择合适的拷贝方式。
总结
理解Python中的深浅拷贝机制对于编写健壮的代码至关重要。关键点总结:
- 赋值操作只是创建引用,不复制对象
- 浅拷贝创建新对象,但共享嵌套引用
- 深拷贝递归复制所有嵌套对象
- 根据实际需求选择合适的拷贝方式
掌握这些概念可以帮助开发者避免许多常见的Python陷阱,写出更可靠、更易维护的代码。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C046
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0123
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.31 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
699
162
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
697
374
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
676
Ascend Extension for PyTorch
Python
243
281
React Native鸿蒙化仓库
JavaScript
271
328