Hyperf框架中实现HTML内容压缩输出的技术方案
2025-06-02 07:42:56作者:范垣楠Rhoda
概述
在Hyperf框架中实现HTML内容压缩输出是一个常见的性能优化需求。本文将详细介绍如何结合think-template视图引擎和html-min压缩库来实现这一功能。
技术背景
Hyperf是一个高性能的PHP协程框架,默认情况下输出的HTML内容会保留原始格式,包含换行和缩进等空白字符。这些空白字符虽然对开发调试有帮助,但在生产环境中会增加传输数据量,影响页面加载速度。
实现方案
方案一:中间件处理
最优雅的实现方式是通过中间件对响应内容进行处理:
- 创建一个新的中间件,例如
HtmlMinifyMiddleware
- 在中间件中捕获响应内容
- 使用html-min库进行压缩
- 返回压缩后的响应
<?php
declare(strict_types=1);
namespace App\Middleware;
use Psr\Http\Message\ResponseInterface;
use Psr\Http\Message\ServerRequestInterface;
use Psr\Http\Server\MiddlewareInterface;
use Psr\Http\Server\RequestHandlerInterface;
use voku\helper\HtmlMin;
class HtmlMinifyMiddleware implements MiddlewareInterface
{
public function process(ServerRequestInterface $request, RequestHandlerInterface $handler): ResponseInterface
{
$response = $handler->handle($request);
$contentType = $response->getHeaderLine('Content-Type');
if (strpos($contentType, 'text/html') === false) {
return $response;
}
$html = (string)$response->getBody();
$htmlMin = new HtmlMin();
$compressedHtml = $htmlMin->minify($html);
$response->getBody()->rewind();
$response->getBody()->write($compressedHtml);
return $response;
}
}
方案二:视图引擎扩展
如果项目主要使用think-template作为视图引擎,也可以考虑扩展视图引擎:
- 创建一个自定义的视图引擎类继承原引擎
- 重写渲染方法,在输出前进行压缩
- 在配置中使用自定义的视图引擎
<?php
declare(strict_types=1);
namespace App\View\Engine;
use think\Template;
use voku\helper\HtmlMin;
class CompressedThinkTemplate extends Template
{
public function fetch(string $template = '', array $data = [], array $config = []): string
{
$content = parent::fetch($template, $data, $config);
$htmlMin = new HtmlMin();
return $htmlMin->minify($content);
}
}
性能考虑
HTML压缩虽然能减少传输数据量,但也会增加服务器CPU负担。建议:
- 生产环境开启压缩
- 开发环境关闭压缩以便调试
- 可以考虑添加缓存机制,避免重复压缩相同内容
最佳实践
- 在Hyperf的
config/autoload/middlewares.php
中注册中间件 - 根据响应内容类型判断是否需要压缩
- 合理配置html-min的压缩选项,平衡压缩率和安全性
总结
通过中间件或自定义视图引擎的方式,可以轻松实现Hyperf框架下的HTML内容压缩输出。这种优化虽然简单,但对网站性能提升有明显效果,特别是在移动网络环境下。开发者应根据项目实际情况选择最适合的实现方式。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~058CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0383- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
52
422

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
349
383

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
873
517

React Native鸿蒙化仓库
C++
179
264

openGauss kernel ~ openGauss is an open source relational database management system
C++
131
185

deepin linux kernel
C
22
5

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
335
1.09 K

harmony-utils 一款功能丰富且极易上手的HarmonyOS工具库,借助众多实用工具类,致力于助力开发者迅速构建鸿蒙应用。其封装的工具涵盖了APP、设备、屏幕、授权、通知、线程间通信、弹框、吐司、生物认证、用户首选项、拍照、相册、扫码、文件、日志,异常捕获、字符、字符串、数字、集合、日期、随机、base64、加密、解密、JSON等一系列的功能和操作,能够满足各种不同的开发需求。
ArkTS
32
0

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.08 K
0