ClickHouse Operator中Keeper组件的DNS域名配置问题解析
在Kubernetes环境中部署ClickHouse集群时,ClickHouse Operator是一个常用的管理工具。近期社区反馈了一个关于ClickHouse Keeper组件的重要配置问题,本文将深入分析该问题的技术背景和解决方案。
问题背景
ClickHouse Keeper是ClickHouse的分布式协调服务组件,类似于Zookeeper。在Kubernetes环境中部署时,ClickHouse Keeper默认使用硬编码的cluster.local
作为DNS后缀来构建服务发现地址。然而,许多Kubernetes生产环境会使用自定义的集群域名(如k8s.local
等),这就导致了服务发现失败的问题。
技术分析
ClickHouse Operator为ClickHouse实例提供了namespaceDomainPattern
配置参数,允许用户覆盖默认的DNS域名模式。但在早期版本中,这个配置参数并未应用于Keeper组件,导致Keeper仍然使用硬编码的svc.cluster.local
域名。
这个问题主要体现在以下几个方面:
- Keeper的StatefulSet配置中直接使用了硬编码域名
- Keeper的配置文件生成逻辑中没有考虑自定义域名
- 服务发现机制无法适应不同的Kubernetes集群配置
解决方案
在ClickHouse Operator 0.24.0版本中,这个问题已得到修复。现在用户可以通过在ClickHouseKeeperInstallation资源中指定namespaceDomainPattern
参数来自定义DNS域名模式。
示例配置如下:
apiVersion: "clickhouse-keeper.altinity.com/v1"
kind: "ClickHouseKeeperInstallation"
metadata:
name: my-keeper
spec:
namespaceDomainPattern: "%s.svc.custom.k8s.local"
configuration:
clusters:
- name: "cluster1"
replicas: 3
最佳实践
对于使用自定义Kubernetes域名的环境,建议:
- 升级到ClickHouse Operator 0.24.0或更高版本
- 明确配置
namespaceDomainPattern
参数,确保与集群实际域名匹配 - 在部署前验证DNS解析是否正常工作
- 对于生产环境,建议先在小规模测试集群上验证配置
总结
ClickHouse Operator对Keeper组件的DNS配置支持是确保ClickHouse集群在自定义Kubernetes环境中稳定运行的关键因素。通过合理配置namespaceDomainPattern
参数,用户可以灵活适应不同的Kubernetes集群配置,保证服务发现的可靠性。随着ClickHouse Operator的持续发展,这类与基础设施相关的兼容性问题正在得到更好的解决。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









