Populator Gem 技术文档
1. 安装指南
由于 Populator gem 已经不再维护,建议用户自行 fork 该项目并进行维护。以下是安装指南:
1.1 Rails 2 安装
在 Rails 2 中,可以通过以下命令安装 Populator gem:
gem install populator
安装完成后,在 rake 任务或其他地方加载 gem:
require "populator"
1.2 Rails 3 支持
Rails 3 的支持正在开发中,请保持关注。
2. 项目使用说明
Populator gem 为所有 Active Record 模型添加了一个 populate 方法,用于批量插入数据。以下是使用说明:
2.1 基本用法
通过 populate 方法,可以指定要创建的记录数量,并在块中设置每条记录的列值。例如:
Person.populate(3000) do |person|
person.first_name = "John"
person.last_name = "Smith"
end
上述代码将批量插入 3000 条记录,每条记录的 first_name 为 "John",last_name 为 "Smith"。
2.2 关联数据插入
可以在 populate 块中设置关联数据。例如:
Person.populate(3000) do |person|
person.first_name = "John"
person.last_name = "Smith"
Project.populate(30) do |project|
project.person_id = person.id
end
end
上述代码将为每个 Person 创建 30 个 Project。
2.3 随机值生成
可以通过传递范围或数组来随机选择值。例如:
Person.populate(1000..5000) do |person|
person.gender = ['male', 'female']
person.annual_income = 10000..200000
end
上述代码将创建 1000 到 5000 条记录,每条记录的 gender 为 "male" 或 "female",annual_income 在 10000 到 200000 之间随机生成。
2.4 分批插入
可以通过 :per_query 选项限制每次插入的记录数量,默认值为 1000。例如:
Person.populate(2000, :per_query => 100)
上述代码将每次插入 100 条记录,总共插入 2000 条。
2.5 生成假数据
Populator 提供了一些方法来生成假数据:
Populator.words(3) # 生成 3 个随机单词
Populator.words(10..20) # 生成 10 到 20 个随机单词
Populator.sentences(5) # 生成 5 个句子
Populator.paragraphs(3) # 生成 3 个段落
如果需要更复杂的数据生成,可以结合 Faker gem 使用。
3. 项目 API 使用文档
3.1 populate 方法
populate 方法用于批量插入数据,接受两个参数:
count: 要插入的记录数量,可以是整数或范围。options: 可选参数,目前仅支持:per_query选项,用于指定每次插入的记录数量。
3.2 块参数
在 populate 块中,可以设置每条记录的列值。块参数为当前记录的对象,可以通过该对象设置列值。
3.3 随机值生成方法
Populator.words(count): 生成指定数量的随机单词。Populator.sentences(count): 生成指定数量的随机句子。Populator.paragraphs(count): 生成指定数量的随机段落。
4. 项目安装方式
4.1 通过 Gem 安装
在 Rails 2 中,可以通过以下命令安装 Populator gem:
gem install populator
4.2 加载 Gem
安装完成后,在 rake 任务或其他地方加载 gem:
require "populator"
4.3 Rails 3 支持
Rails 3 的支持正在开发中,请保持关注。
5. 注意事项
由于性能原因,Populator gem 不会使用模型的实际实例,因此会绕过验证和回调。用户需要自行确保插入的数据是有效的。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00