Apache Pulsar NegativeAcksTracker 死锁问题分析与解决方案
2025-05-15 08:59:41作者:卓艾滢Kingsley
问题背景
在 Apache Pulsar 4.0 分支的测试过程中,发现了一个潜在的死锁问题。该问题出现在 org.apache.pulsar.client.api.InterceptorsTest.testConsumerInterceptorForNegativeAcksSend 测试用例执行期间,涉及 NegativeAcksTracker 和 ConsumerImpl 两个关键组件之间的锁竞争。
死锁场景分析
死锁发生在两个线程之间:
-
主测试线程:
- 持有 ConsumerImpl 的锁
- 等待获取 NegativeAcksTracker 的锁
-
定时器线程(pulsar-timer):
- 持有 NegativeAcksTracker 的锁
- 等待获取 ConsumerImpl 的锁
具体调用链如下:
-
测试线程:
ConsumerImpl.closeAsync()→ConsumerImpl.closeConsumerTasks()→NegativeAcksTracker.close() -
定时器线程:
NegativeAcksTracker.triggerRedelivery()→ConsumerImpl.redeliverUnacknowledgedMessages()
根本原因
这个死锁问题的根本原因是锁获取顺序不一致导致的循环等待:
- 测试线程先获取 ConsumerImpl 锁,然后尝试获取 NegativeAcksTracker 锁
- 定时器线程先获取 NegativeAcksTracker 锁,然后尝试获取 ConsumerImpl 锁
这种交叉锁获取方式在并发环境下很容易形成死锁。
技术影响
这种死锁会导致以下问题:
- 消费者无法正常关闭,资源无法释放
- 消息重投递机制可能失效
- 系统资源可能被长时间占用
- 在长时间运行的生产环境中可能导致内存泄漏
解决方案
解决这类死锁问题的常见方法包括:
- 统一锁获取顺序:确保所有线程都以相同的顺序获取锁
- 锁超时机制:为锁获取设置超时时间
- 减小锁粒度:将大锁拆分为多个小锁
- 无锁设计:使用并发容器或原子操作
针对这个具体问题,最合适的解决方案是统一锁获取顺序。可以调整 NegativeAcksTracker 的实现,确保它不会在持有自身锁的情况下调用需要 ConsumerImpl 锁的方法。
实现建议
- 在 NegativeAcksTracker 中,将触发重投递的操作放入队列
- 使用单独的线程处理这些操作,避免在定时器线程中直接调用需要 ConsumerImpl 锁的方法
- 在 close 方法中,先获取 NegativeAcksTracker 锁,再获取 ConsumerImpl 锁(如果需要)
预防措施
为避免类似问题再次发生,建议:
- 在代码审查时特别注意跨组件的锁依赖
- 编写并发测试用例,模拟高并发场景
- 使用静态分析工具检测潜在的锁顺序问题
- 文档化组件间的锁依赖关系
总结
Apache Pulsar 中的这个死锁问题展示了分布式系统中常见的并发挑战。通过分析锁竞争关系和调整锁获取顺序,可以有效解决这类问题。对于消息中间件这类高并发系统,合理的锁设计和严格的并发控制是保证系统稳定性的关键。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
348
413
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
609
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
185
暂无简介
Dart
778
193
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
758
React Native鸿蒙化仓库
JavaScript
303
357
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
896