Supervision项目增强Transformers目标检测结果处理能力
2025-05-07 10:10:37作者:邓越浪Henry
Supervision项目近期对其目标检测功能进行了重要升级,特别针对Transformers模型的支持进行了增强。这一改进使得开发者能够更便捷地处理来自Hugging Face Transformers库的目标检测结果,并实现可视化标注。
功能背景
Supervision作为一个功能强大的计算机视觉工具库,一直致力于简化目标检测任务的后处理流程。在最新更新之前,该库已经支持从Inference和Ultralytics等流行框架中提取检测结果并自动获取类别名称。然而,对于Transformers模型的支持尚不完善,特别是在类别名称处理方面存在局限性。
技术实现细节
新版本中,from_transformers方法得到了显著增强,现在可以:
- 接收Transformers模型输出的原始检测结果
- 通过
id2label参数映射类别ID到可读的类别名称 - 返回包含完整检测信息的Detections对象
这一改进使得Transformers模型(如DETR)的检测结果能够无缝集成到Supervision的工作流中,与其他框架保持一致的API体验。
实际应用示例
开发者现在可以轻松实现以下流程:
# 初始化Transformers模型和处理器
processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50")
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50")
# 处理图像并获取检测结果
image = Image.open("example.jpg")
inputs = processor(images=image, return_tensors="pt")
outputs = model(**inputs)
results = processor.post_process_object_detection(outputs, target_sizes=target_size)[0]
# 转换为Supervision检测对象
detections = sv.Detections.from_transformers(results, id2label=model.config.id2label)
# 可视化标注
annotated_image = bounding_box_annotator.annotate(scene=image, detections=detections)
annotated_image = label_annotator.annotate(scene=annotated_image, detections=detections)
技术价值
这一增强为开发者带来了多项优势:
- 统一的工作流:现在可以使用相同的Supervision API处理来自不同框架的检测结果
- 简化开发:无需手动处理类别ID到名称的转换,减少样板代码
- 可视化一致性:确保Transformers模型的检测结果可视化与其他框架保持相同风格
- 提高效率:缩短从模型输出到可视化结果的开发时间
总结
Supervision项目通过这次更新,进一步巩固了其作为计算机视觉后处理首选工具库的地位。特别是对于使用Transformers进行目标检测的研究人员和开发者来说,这一改进显著简化了结果处理和可视化流程,使得整个开发体验更加流畅高效。这一变化也体现了Supervision项目对开发者需求的快速响应和对多框架支持的持续投入。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.71 K
Ascend Extension for PyTorch
Python
328
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
876
577
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
187
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
135