table-to-excel 项目亮点解析
2025-04-23 17:55:34作者:裘旻烁
1. 项目的基础介绍
table-to-excel 是一个开源项目,旨在为开发者提供一个简单、高效的将网页表格数据转换为 Excel 文件的工具。该项目的核心理念是减少复杂操作,使得用户能够轻松地将网页上的表格数据导出为 Excel 格式,以便于进一步的数据处理和分析。
2. 项目代码目录及介绍
项目的代码目录结构清晰,主要包括以下几个部分:
src/:存放项目的源代码,包括主要的 JavaScript 文件。dist/:编译后的文件,包含压缩和未压缩的版本,供生产环境使用。example/:示例文件,展示了如何使用该库。test/:测试文件,用于保证代码的质量和稳定性。README.md:项目说明文件,包含了项目的基本信息和安装使用方式。
3. 项目亮点功能拆解
table-to-excel 的亮点功能主要包括:
- 自动识别网页表格,并提供导出为 Excel 的功能。
- 支持自定义导出的表格样式,包括列宽、行高、字体大小等。
- 支持导出大数据量的表格,不会因为数据量大而出现性能问题。
- 提供了丰富的配置选项,满足不同用户的需求。
4. 项目主要技术亮点拆解
该项目的技术亮点主要包括:
- 使用原生 JavaScript 编写,无依赖第三方库,降低了项目的复杂性和耦合度。
- 利用 HTML5 的 API,如
Blob和a标签的download属性,实现了浏览器端的文件导出功能。 - 代码经过优化,执行效率高,能够快速处理大量数据。
5. 与同类项目对比的亮点
相较于同类项目,table-to-excel 的亮点在于:
- 简单易用,用户无需了解复杂的 Excel 文件格式即可使用。
- 高度可定制,用户可以根据自己的需求调整导出的样式。
- 社区活跃,项目维护及时,能快速响应和修复问题。
- 无需额外安装软件或插件,直接在浏览器中运行,方便快捷。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
305
2.68 K
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
136
163
React Native鸿蒙化仓库
JavaScript
233
309
暂无简介
Dart
596
130
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
630
227
仓颉编译器源码及 cjdb 调试工具。
C++
123
642
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
614
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
195
71
仓颉编程语言测试用例。
Cangjie
36
642