Magma项目中的动作归一化处理策略解析
2025-07-10 21:28:39作者:庞队千Virginia
摘要
本文深入分析了微软Magma项目在跨本体机器人学习(OXE)中采用的动作归一化处理策略。作为基于视频预训练的多模态大模型,Magma在动作表示方面采用了独特的离散化处理方法,这对模型的训练和推理过程产生了重要影响。
动作归一化的必要性
在跨本体机器人学习场景中,不同机器人硬件平台产生的动作值范围差异极大。例如,工业机械臂的关节角度值与轮式机器人的速度指令可能处于完全不同的数量级。Magma项目团队借鉴了OpenVLA的做法,对所有机器人平台的动作数据进行归一化处理,将不同本体的动作映射到相似的输出分布空间。
这种处理带来三个主要优势:
- 统一不同机器人平台的动作表示空间
- 缓解模型训练过程中的数值不稳定问题
- 提高模型对不同机器人平台的泛化能力
Magma的具体实现方案
Magma项目采用了分阶段的数据处理流程:
训练阶段
在训练数据准备阶段,Magma通过专门的预处理流程对原始动作数据进行归一化。具体实现中:
- 使用分位数归一化方法(基于q_01和q_99值)
- 为每个机器人平台单独计算并存储数据统计量
- 将归一化后的数据与视觉轨迹等特征一起存储在Magma-OXE-ToM数据集中
推理阶段
在模型部署时,Magma执行反向操作:
- 模型输出归一化空间的动作预测
- 根据目标机器人平台的数据统计量进行反归一化
- 将动作值映射回原始机器人控制空间
技术挑战与解决方案
离散化带来的精度损失
Magma采用离散化的动作表示方法,将连续动作空间划分为固定数量的区间(bin)。这种处理虽然简化了学习问题,但也带来了两个主要挑战:
- 动作精度下降:离散化会损失连续动作空间的细粒度控制能力
- 多义性问题:同一个离散化区间可能对应不同机器人平台的多个原始动作值
Magma团队指出,这种精度损失在实践中的影响可以通过以下方式缓解:
- 增加离散化区间的数量
- 在下游任务上进行充分的微调(如OpenVLA在LIBERO任务上进行了超过50K步的微调)
- 在必要时可采用扩散策略等更精细的动作解码方法
跨本体泛化
Magma的核心创新之一是通过视频预训练结合心智理论(ToM)目标来提升模型的跨本体泛化能力。在动作处理方面:
- 归一化处理为不同机器人建立了统一的动作表示空间
- 离散化进一步抽象了具体机器人的底层控制细节
- 模型主要学习高级别的任务语义和策略,而非具体的控制指令
实践建议
基于Magma项目的经验,对于类似跨本体学习任务,我们建议:
- 数据预处理:务必对不同本体的动作数据进行标准化处理
- 模型设计:根据任务需求权衡离散化粒度与模型容量
- 下游适配:预留足够的微调预算以适应目标机器人平台
- 替代方案:对于需要精细控制的场景,可考虑连续动作表示或混合方案
结论
Magma项目的动作处理策略展示了如何在保持模型简洁性的同时实现跨本体泛化。虽然离散化方法存在精度损失,但其在预训练阶段的优势使其成为大规模跨本体学习的实用选择。随着多模态大模型在机器人领域的深入应用,动作表示方法将继续演进,而Magma的经验为此提供了有价值的参考。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
59
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
973
574

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133