Magma项目中的动作归一化处理策略解析
2025-07-10 19:58:24作者:庞队千Virginia
摘要
本文深入分析了微软Magma项目在跨本体机器人学习(OXE)中采用的动作归一化处理策略。作为基于视频预训练的多模态大模型,Magma在动作表示方面采用了独特的离散化处理方法,这对模型的训练和推理过程产生了重要影响。
动作归一化的必要性
在跨本体机器人学习场景中,不同机器人硬件平台产生的动作值范围差异极大。例如,工业机械臂的关节角度值与轮式机器人的速度指令可能处于完全不同的数量级。Magma项目团队借鉴了OpenVLA的做法,对所有机器人平台的动作数据进行归一化处理,将不同本体的动作映射到相似的输出分布空间。
这种处理带来三个主要优势:
- 统一不同机器人平台的动作表示空间
- 缓解模型训练过程中的数值不稳定问题
- 提高模型对不同机器人平台的泛化能力
Magma的具体实现方案
Magma项目采用了分阶段的数据处理流程:
训练阶段
在训练数据准备阶段,Magma通过专门的预处理流程对原始动作数据进行归一化。具体实现中:
- 使用分位数归一化方法(基于q_01和q_99值)
- 为每个机器人平台单独计算并存储数据统计量
- 将归一化后的数据与视觉轨迹等特征一起存储在Magma-OXE-ToM数据集中
推理阶段
在模型部署时,Magma执行反向操作:
- 模型输出归一化空间的动作预测
- 根据目标机器人平台的数据统计量进行反归一化
- 将动作值映射回原始机器人控制空间
技术挑战与解决方案
离散化带来的精度损失
Magma采用离散化的动作表示方法,将连续动作空间划分为固定数量的区间(bin)。这种处理虽然简化了学习问题,但也带来了两个主要挑战:
- 动作精度下降:离散化会损失连续动作空间的细粒度控制能力
- 多义性问题:同一个离散化区间可能对应不同机器人平台的多个原始动作值
Magma团队指出,这种精度损失在实践中的影响可以通过以下方式缓解:
- 增加离散化区间的数量
- 在下游任务上进行充分的微调(如OpenVLA在LIBERO任务上进行了超过50K步的微调)
- 在必要时可采用扩散策略等更精细的动作解码方法
跨本体泛化
Magma的核心创新之一是通过视频预训练结合心智理论(ToM)目标来提升模型的跨本体泛化能力。在动作处理方面:
- 归一化处理为不同机器人建立了统一的动作表示空间
- 离散化进一步抽象了具体机器人的底层控制细节
- 模型主要学习高级别的任务语义和策略,而非具体的控制指令
实践建议
基于Magma项目的经验,对于类似跨本体学习任务,我们建议:
- 数据预处理:务必对不同本体的动作数据进行标准化处理
- 模型设计:根据任务需求权衡离散化粒度与模型容量
- 下游适配:预留足够的微调预算以适应目标机器人平台
- 替代方案:对于需要精细控制的场景,可考虑连续动作表示或混合方案
结论
Magma项目的动作处理策略展示了如何在保持模型简洁性的同时实现跨本体泛化。虽然离散化方法存在精度损失,但其在预训练阶段的优势使其成为大规模跨本体学习的实用选择。随着多模态大模型在机器人领域的深入应用,动作表示方法将继续演进,而Magma的经验为此提供了有价值的参考。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0127
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 Jetson TX2开发板官方资源完全指南:从入门到精通 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
446
3.35 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
702
166
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
680
React Native鸿蒙化仓库
JavaScript
278
329
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1