Magma项目中的动作归一化处理策略解析
2025-07-10 01:35:18作者:庞队千Virginia
摘要
本文深入分析了微软Magma项目在跨本体机器人学习(OXE)中采用的动作归一化处理策略。作为基于视频预训练的多模态大模型,Magma在动作表示方面采用了独特的离散化处理方法,这对模型的训练和推理过程产生了重要影响。
动作归一化的必要性
在跨本体机器人学习场景中,不同机器人硬件平台产生的动作值范围差异极大。例如,工业机械臂的关节角度值与轮式机器人的速度指令可能处于完全不同的数量级。Magma项目团队借鉴了OpenVLA的做法,对所有机器人平台的动作数据进行归一化处理,将不同本体的动作映射到相似的输出分布空间。
这种处理带来三个主要优势:
- 统一不同机器人平台的动作表示空间
- 缓解模型训练过程中的数值不稳定问题
- 提高模型对不同机器人平台的泛化能力
Magma的具体实现方案
Magma项目采用了分阶段的数据处理流程:
训练阶段
在训练数据准备阶段,Magma通过专门的预处理流程对原始动作数据进行归一化。具体实现中:
- 使用分位数归一化方法(基于q_01和q_99值)
- 为每个机器人平台单独计算并存储数据统计量
- 将归一化后的数据与视觉轨迹等特征一起存储在Magma-OXE-ToM数据集中
推理阶段
在模型部署时,Magma执行反向操作:
- 模型输出归一化空间的动作预测
- 根据目标机器人平台的数据统计量进行反归一化
- 将动作值映射回原始机器人控制空间
技术挑战与解决方案
离散化带来的精度损失
Magma采用离散化的动作表示方法,将连续动作空间划分为固定数量的区间(bin)。这种处理虽然简化了学习问题,但也带来了两个主要挑战:
- 动作精度下降:离散化会损失连续动作空间的细粒度控制能力
- 多义性问题:同一个离散化区间可能对应不同机器人平台的多个原始动作值
Magma团队指出,这种精度损失在实践中的影响可以通过以下方式缓解:
- 增加离散化区间的数量
- 在下游任务上进行充分的微调(如OpenVLA在LIBERO任务上进行了超过50K步的微调)
- 在必要时可采用扩散策略等更精细的动作解码方法
跨本体泛化
Magma的核心创新之一是通过视频预训练结合心智理论(ToM)目标来提升模型的跨本体泛化能力。在动作处理方面:
- 归一化处理为不同机器人建立了统一的动作表示空间
- 离散化进一步抽象了具体机器人的底层控制细节
- 模型主要学习高级别的任务语义和策略,而非具体的控制指令
实践建议
基于Magma项目的经验,对于类似跨本体学习任务,我们建议:
- 数据预处理:务必对不同本体的动作数据进行标准化处理
- 模型设计:根据任务需求权衡离散化粒度与模型容量
- 下游适配:预留足够的微调预算以适应目标机器人平台
- 替代方案:对于需要精细控制的场景,可考虑连续动作表示或混合方案
结论
Magma项目的动作处理策略展示了如何在保持模型简洁性的同时实现跨本体泛化。虽然离散化方法存在精度损失,但其在预训练阶段的优势使其成为大规模跨本体学习的实用选择。随着多模态大模型在机器人领域的深入应用,动作表示方法将继续演进,而Magma的经验为此提供了有价值的参考。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0132
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
497
3.65 K
Ascend Extension for PyTorch
Python
301
343
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
308
132
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
869
480
暂无简介
Dart
745
180
React Native鸿蒙化仓库
JavaScript
297
347
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
66
20
仓颉编译器源码及 cjdb 调试工具。
C++
151
882