LIQE 开源项目使用教程
2024-09-14 13:15:11作者:尤辰城Agatha
1. 项目介绍
LIQE 是一个用于盲图像质量评估(Blind Image Quality Assessment, BIQA)的开源项目。该项目通过视觉-语言对应关系,采用多任务学习的方法,预测图像质量,而无需任何参考信息。LIQE 在 CVPR2023 中提出,旨在通过多任务学习方案,利用其他任务的辅助知识,自动确定模型参数共享和损失权重,从而提高图像质量评估的准确性和鲁棒性。
2. 项目快速启动
环境准备
首先,确保你的环境中安装了以下依赖:
- Python 3
- PyTorch 1.8+
- torchvision
你可以通过以下命令安装所需的 Python 包:
pip install ftfy regex tqdm
pip install git+https://github.com/openai/CLIP.git
下载项目
使用 Git 克隆 LIQE 项目到本地:
git clone https://github.com/zwx8981/LIQE.git
cd LIQE
训练模型
在项目目录下,运行以下命令进行模型训练:
python train_unique_clip_weight.py
评估模型
训练完成后,可以使用以下命令对模型进行评估:
python BIQA_benchmark.py
使用示例
以下是一个简单的使用示例,展示如何使用 LIQE 进行图像质量评估:
import pyiqa
# 创建 LIQE 模型
model = pyiqa.create_metric('liqe', as_loss=False)
# 评估图像质量
img_path = 'path_to_your_image.jpg'
score = model(img_path)
print(f'Image Quality Score: {score}')
3. 应用案例和最佳实践
应用案例
LIQE 可以广泛应用于需要图像质量评估的场景,例如:
- 图像处理软件:在图像处理软件中,用户上传的图像可能存在质量问题,LIQE 可以帮助自动评估图像质量,提供反馈或自动优化。
- 监控系统:在监控系统中,图像质量直接影响监控效果,LIQE 可以帮助实时评估监控图像的质量,确保监控系统的有效性。
最佳实践
- 数据集选择:在训练 LIQE 模型时,选择多样化的数据集可以提高模型的泛化能力。建议使用多个公开的图像质量评估数据集进行训练。
- 超参数调优:通过调整训练脚本中的超参数(如学习率、批量大小等),可以进一步提升模型的性能。
4. 典型生态项目
LIQE 作为一个图像质量评估工具,可以与其他图像处理和计算机视觉项目结合使用,例如:
- OpenCV:用于图像处理和计算机视觉任务的基础库,可以与 LIQE 结合使用,进行图像预处理和后处理。
- PyTorch:深度学习框架,LIQE 基于 PyTorch 实现,可以与其他 PyTorch 模型结合使用,构建更复杂的图像处理系统。
- CLIP:OpenAI 的视觉-语言模型,LIQE 利用 CLIP 进行视觉-语言对应关系的计算,可以与 CLIP 结合使用,进行更复杂的视觉任务。
通过结合这些生态项目,可以构建更强大的图像处理和质量评估系统。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
245
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
662
313
React Native鸿蒙化仓库
JavaScript
262
323
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218