LMDeploy项目中使用自定义Chat模板处理VLM模型输入的技术方案
2025-06-04 17:50:44作者:尤峻淳Whitney
在基于LMDeploy部署视觉语言模型(VLM)时,开发者经常需要处理复杂的多模态输入。本文将以llava-ov模型为例,深入探讨如何通过自定义Chat模板来控制模型输入预处理流程。
核心问题分析
当使用LMDeploy处理VLM模型时,系统默认会执行两个关键预处理步骤:
- 应用Chat模板格式化输入
- 为图像生成嵌入表示
但在某些场景下,开发者可能已经完成了消息的格式化工作,此时需要绕过系统的模板处理步骤。这种情况常见于:
- 已按照特定格式预处理对话历史
- 需要保持与上游系统一致的对话格式
- 实现特殊的提示工程需求
技术解决方案
自定义Chat模板配置
通过创建自定义的chat_template配置文件,可以精确控制预处理行为:
{
"model_name": "llava-ov",
"capability": "completion"
}
在代码中加载此配置:
from lmdeploy import pipeline, ChatTemplateConfig
pipe = pipeline('/path/to/model',
log_level='INFO',
chat_template_config=ChatTemplateConfig.from_json('chat.json'))
关键实现细节
-
图像标记处理:当绕过默认模板时,必须手动在提示词中添加图像标记
<IMAGE_TOKEN>替代原生的<image>标签 -
格式一致性:确保自定义提示完全符合模型预期的对话结构,包括:
- 正确的对话角色标记(如
<|im_start|>) - 适当的换行和分隔符
- 准确的图像标记位置和数量
- 正确的对话角色标记(如
-
多图像处理:对于多图像输入,需要确保
<IMAGE_TOKEN>的数量与提供的图像数量严格匹配
最佳实践建议
-
模板验证:在投入生产前,建议先用少量样本验证自定义模板的正确性
-
性能考量:虽然跳过模板处理可以减少预处理时间,但需要权衡维护自定义格式的复杂度
-
错误处理:实现适当的输入验证机制,确保图像标记数量与图像张数一致
-
文档记录:详细记录自定义模板的格式规范,便于团队协作和后续维护
典型应用场景
这种技术方案特别适用于:
- 将现有对话系统迁移到LMDeploy平台
- 实现特殊的提示工程策略
- 需要严格控制输入格式的研究实验
- 多阶段处理流程中需要保持中间格式一致的场景
通过合理使用自定义Chat模板,开发者可以在LMDeploy框架下实现更灵活的多模态输入处理,满足各种复杂的业务需求。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.77 K
Ascend Extension for PyTorch
Python
347
413
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
607
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
184
暂无简介
Dart
778
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
758
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
896