LMDeploy项目中使用自定义Chat模板处理VLM模型输入的技术方案
2025-06-04 17:50:44作者:尤峻淳Whitney
在基于LMDeploy部署视觉语言模型(VLM)时,开发者经常需要处理复杂的多模态输入。本文将以llava-ov模型为例,深入探讨如何通过自定义Chat模板来控制模型输入预处理流程。
核心问题分析
当使用LMDeploy处理VLM模型时,系统默认会执行两个关键预处理步骤:
- 应用Chat模板格式化输入
- 为图像生成嵌入表示
但在某些场景下,开发者可能已经完成了消息的格式化工作,此时需要绕过系统的模板处理步骤。这种情况常见于:
- 已按照特定格式预处理对话历史
- 需要保持与上游系统一致的对话格式
- 实现特殊的提示工程需求
技术解决方案
自定义Chat模板配置
通过创建自定义的chat_template配置文件,可以精确控制预处理行为:
{
"model_name": "llava-ov",
"capability": "completion"
}
在代码中加载此配置:
from lmdeploy import pipeline, ChatTemplateConfig
pipe = pipeline('/path/to/model',
log_level='INFO',
chat_template_config=ChatTemplateConfig.from_json('chat.json'))
关键实现细节
-
图像标记处理:当绕过默认模板时,必须手动在提示词中添加图像标记
<IMAGE_TOKEN>替代原生的<image>标签 -
格式一致性:确保自定义提示完全符合模型预期的对话结构,包括:
- 正确的对话角色标记(如
<|im_start|>) - 适当的换行和分隔符
- 准确的图像标记位置和数量
- 正确的对话角色标记(如
-
多图像处理:对于多图像输入,需要确保
<IMAGE_TOKEN>的数量与提供的图像数量严格匹配
最佳实践建议
-
模板验证:在投入生产前,建议先用少量样本验证自定义模板的正确性
-
性能考量:虽然跳过模板处理可以减少预处理时间,但需要权衡维护自定义格式的复杂度
-
错误处理:实现适当的输入验证机制,确保图像标记数量与图像张数一致
-
文档记录:详细记录自定义模板的格式规范,便于团队协作和后续维护
典型应用场景
这种技术方案特别适用于:
- 将现有对话系统迁移到LMDeploy平台
- 实现特殊的提示工程策略
- 需要严格控制输入格式的研究实验
- 多阶段处理流程中需要保持中间格式一致的场景
通过合理使用自定义Chat模板,开发者可以在LMDeploy框架下实现更灵活的多模态输入处理,满足各种复杂的业务需求。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134