Polars内存优化:处理大规模数据时的异常内存消耗问题分析
2025-05-04 15:09:44作者:薛曦旖Francesca
问题背景
在使用Polars处理大规模数据集时,我们发现了一个有趣的内存消耗异常现象:当加载一个包含500万行的单列数据时,内存消耗反而比加载仅包含6万行数据的列要少得多。这种现象与常规认知相悖,通常我们会预期处理更多数据需要更多内存资源。
问题重现
通过分析具体案例,我们发现:
- 数据集包含约3%的"ICE"类别数据和0.016%的"TGV"类别数据
- 约10%的行具有"is_final=True"标记
- 最终"final & ICE"组合约有500万行
- 最终"final & TGV"组合仅有6万行
当使用Polars执行过滤查询时,处理6万行"TGV"数据时内存消耗达到5-6GB,而处理500万行"ICE"数据时却几乎没有明显内存增长。
技术分析
经过深入调查,我们发现这一异常现象与以下几个技术因素相关:
字典编码与字符串展开
Polars在处理某些类别数据时,会采用不同的内部表示方式:
- 对于高频出现的类别(如"ICE"),Polars能够直接在字典编码形式下执行过滤操作
- 对于低频出现的类别(如"TGV"),Polars会将字典编码的类别完全展开为字符串后再进行过滤
这种差异导致了内存消耗的巨大不同,字符串展开操作会显著增加内存使用量。
并行处理策略的影响
测试表明,使用不同的并行处理策略会对性能产生显著影响:
- 默认设置下,低频类别过滤性能较差
- 显式设置
parallel="prefiltered"
可使运行时间降低约20倍 - 新版流式引擎在特定配置下也能避免此问题
数据分布与内存管理
问题的核心在于数据分布特性与内存管理策略的交互:
- 高频类别数据分布均匀,过滤操作可以高效执行
- 低频类别需要从大数据集中提取少量数据,但中间过程未能及时释放内存
- 大数据块同时展开导致瞬时内存峰值
解决方案与优化建议
针对这一问题,我们推荐以下解决方案:
- 使用新版流式引擎:通过
.collect(engine="streaming")
可以显著降低内存使用 - 调整并行策略:设置
parallel='prefiltered'
参数优化低频类别处理 - 版本选择:Polars 1.14版本不存在此问题,可考虑降级使用
- 数据预处理:将大数据集拆分为更小的文件有助于降低内存峰值
技术启示
这一案例为我们提供了宝贵的经验:
- 大数据处理框架的性能表现高度依赖于数据分布特征
- 内存管理策略需要针对不同数据模式进行优化
- 框架的默认配置可能不适合所有场景,需要根据实际情况调整
- 流式处理引擎在处理特定模式数据时具有明显优势
通过理解这些底层机制,我们可以更有效地使用Polars处理各种规模的数据集,避免潜在的性能陷阱。
登录后查看全文
热门项目推荐
相关项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0331- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
179
263

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
869
514

openGauss kernel ~ openGauss is an open source relational database management system
C++
130
183

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
295
331

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
333
1.09 K

harmony-utils 一款功能丰富且极易上手的HarmonyOS工具库,借助众多实用工具类,致力于助力开发者迅速构建鸿蒙应用。其封装的工具涵盖了APP、设备、屏幕、授权、通知、线程间通信、弹框、吐司、生物认证、用户首选项、拍照、相册、扫码、文件、日志,异常捕获、字符、字符串、数字、集合、日期、随机、base64、加密、解密、JSON等一系列的功能和操作,能够满足各种不同的开发需求。
ArkTS
18
0

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
22
5

微信开发 Java SDK,支持微信支付、开放平台、公众号、视频号、企业微信、小程序等的后端开发,记得关注公众号及时接受版本更新信息,以及加入微信群进行深入讨论
Java
829
22

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
601
58