基于PyMC3的贝叶斯逻辑回归模型解析
2025-07-07 03:35:36作者:晏闻田Solitary
模型概述
本文要介绍的是parsing-science/pymc3_models项目中的贝叶斯逻辑回归实现。这个实现基于PyMC3概率编程框架,提供了一种贝叶斯方法来解决分类问题。与传统的逻辑回归不同,贝叶斯方法不仅给出预测结果,还能提供预测的不确定性估计。
核心设计思想
该实现的核心是将逻辑回归建模为一个概率生成过程:
- 定义模型参数(截距α和系数β)的先验分布
- 建立从输入到输出的概率关系
- 通过观测数据来更新对参数的认知(后验分布)
这种贝叶斯方法相比传统逻辑回归有几个优势:
- 可以自然地处理小样本问题
- 提供参数和预测的不确定性估计
- 避免过拟合问题
- 支持灵活的模型扩展
模型构建详解
1. 模型结构定义
在create_model方法中,模型被定义为:
alpha = pm.Normal('alpha', mu=0, sd=100, shape=(1))
betas = pm.Normal('betas', mu=0, sd=100, shape=(1, self.num_pred))
这里为截距α和系数β设置了正态先验分布,均值为0,标准差为100。这是一个相对宽泛的先验,表示我们对参数没有很强的先验知识。
2. 链接函数
逻辑回归的核心是logit链接函数:
temp = alpha + T.sum(betas * model_input, 1)
p = pm.invlogit(temp)
这里计算了线性组合后通过逆logit函数(即sigmoid函数)将其映射到[0,1]区间,表示属于正类的概率。
3. 似然函数
观测数据通过伯努利分布建模:
o = pm.Bernoulli('o', p, observed=model_output)
这表示观测到的标签服从参数为p的伯努利分布。
训练过程
fit方法支持两种推断方式:
-
ADVI(自动微分变分推断)
- 适合大数据集
- 可以配合minibatch使用
- 速度快但近似程度较低
-
NUTS(No-U-Turn Sampler)
- 精确的MCMC采样
- 适合中小数据集
- 计算成本较高
训练时需要注意:
- 输入X应为二维数组[样本数, 特征数]
- 输出y应为一维数组
- 可以设置minibatch_size来启用小批量训练
预测与评估
模型提供了三种预测相关方法:
predict_proba: 返回预测概率,可选择是否返回标准差predict: 返回二分类结果(阈值0.5)score: 使用准确率评估模型性能
预测时使用后验预测检查(PPC)方法,从拟合的后验分布中采样生成预测。
使用建议
-
数据预处理:
- 标准化连续特征
- 处理类别特征(如one-hot编码)
- 检查标签平衡性
-
模型调整:
- 尝试不同的先验分布
- 调整ADVI的样本数或NUTS的迭代次数
- 监控收敛情况
-
结果解释:
- 不仅关注预测结果,还要关注不确定性
- 分析参数的后验分布
- 进行模型比较和验证
扩展可能性
这个基础实现可以进一步扩展:
- 添加正则化先验(如拉普拉斯先验)
- 实现多分类逻辑回归
- 加入层次结构处理组间差异
- 开发自定义链接函数
总结
parsing-science/pymc3_models中的LogisticRegression实现提供了一个灵活、强大的贝叶斯分类工具。它结合了PyMC3的概率编程能力和scikit-learn风格的API设计,使得贝叶斯方法可以方便地应用于实际分类问题。通过理解其设计原理和使用方法,开发者可以更好地利用贝叶斯逻辑回归解决实际问题。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
615
140
Ascend Extension for PyTorch
Python
167
187
React Native鸿蒙化仓库
JavaScript
240
315
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
255
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
373
3.18 K
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.09 K
618
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
261
92