Latte项目中Sky数据集FVD评估问题的技术解析
2025-07-07 06:04:04作者:姚月梅Lane
在视频生成模型评估过程中,Frechet Video Distance(FVD)是一个重要的量化指标。本文针对Latte项目中使用Sky Timelapse数据集进行FVD评估时遇到的技术问题进行分析,并提供完整的解决方案。
数据集结构问题分析
原始Sky Timelapse数据集采用两级目录结构:
sky_train/
├── 08ug3bzhV8Y/
│ └── 08ug3bzhV8Y_1/
└── 3bufRYg7qxY/
├── 3bufRYg7qxY_1/
└── 3bufRYg7qxY_2/
这种结构会导致FVD计算脚本报错"Video directories should be inside the root dir"。根本原因是Latte的评估脚本要求视频帧必须直接位于一级子目录下。
正确的数据结构规范
符合Latte评估要求的数据结构应为:
sky_train_fvd/
├── 08ug3bzhV8Y_1/
│ ├── frame_000001.jpg
│ └── frame_000002.jpg
└── 3bufRYg7qxY_1/
├── frame_000001.jpg
└── frame_000002.jpg
分辨率处理要点
评估过程中另一个关键点是分辨率处理。原始Sky数据集并非256×256分辨率,需要特别注意:
- 训练阶段:Latte模型会自动进行中心裁剪和缩放处理
- 评估阶段:需要手动预处理,建议采用中心裁剪后缩放的策略
完整评估流程
-
数据预处理:
- 重组目录结构为单层
- 执行中心裁剪和分辨率调整(建议使用多进程处理)
-
视频生成:
torchrun --nnodes=1 --nproc_per_node=8 sample/sample_ddp_baseline.py \
--config configs/sky/sky_sample.yaml \
--ckpt ckpts/skytimelapse.pt \
--save_video_path output_videos/
- 视频转帧:
python tools/convert_videos_to_frames.py \
-s output_videos \
-t output_frames --target_size 256
- FVD计算:
python tools/calc_metrics_for_dataset.py \
--real_data_path processed_sky_train \
--fake_data_path output_frames \
--resolution 256 --metrics fvd2048_16f
常见问题排查
-
FVD值异常偏高:
- 检查分辨率是否一致
- 确认预处理方式(必须与训练时相同)
- 验证生成视频的视觉质量
-
评估速度优化:
- 使用
--use_cache 1参数 - 适当增加GPU数量
- 使用
通过以上步骤,可以确保在Latte项目中正确评估Sky数据集的生成效果。特别提醒,数据预处理的质量直接影响评估结果的可靠性,建议在处理前后都进行可视化检查。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.71 K
Ascend Extension for PyTorch
Python
328
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
876
577
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
187
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
135