在MicroK8s上部署Kubero的实践指南
Kubero是一个优秀的Kubernetes管理工具,本文将详细介绍如何在MicroK8s环境中部署Kubero系统。MicroK8s作为轻量级Kubernetes发行版,非常适合本地开发和测试环境。
环境准备
首先需要确保MicroK8s集群已正确安装并运行。可以通过以下命令验证集群状态:
microk8s status
确保输出显示所有核心服务(如API服务器、容器运行时等)都处于运行状态。如果尚未启用必要的插件,需要执行:
microk8s enable dns storage ingress
Kubero安装步骤
-
安装kubero-cli工具: 这是与Kubero交互的主要命令行工具,可以通过包管理器或直接下载二进制文件安装。
-
初始化Kubero: 使用kubero-cli初始化Kubero安装配置:
kubero init -
选择安装选项: 在交互式安装过程中,选择不使用OLM(Operator Lifecycle Manager),因为当前版本的OLM可能与MicroK8s存在兼容性问题。
-
应用配置: 完成配置后,执行安装命令:
kubero install
常见问题解决
在安装过程中可能会遇到以下问题:
-
证书管理器问题: 如果发现cert-manager集群签发者未自动安装,需要手动配置。这是已知问题,已在kubero-cli v2.2.0版本中修复。
-
UI仪表板卡住: 如果Kubero UI仪表板无法正常加载,可以检查相关Pod的状态和日志:
kubectl get pods -n kubero kubectl logs <pod-name> -n kubero -
上下文配置: 确保kubectl配置了正确的上下文指向MicroK8s集群。MicroK8s默认使用特殊命令前缀,可以设置别名简化操作:
alias k="microk8s kubectl"
最佳实践建议
-
资源分配: MicroK8s运行在资源有限的机器上时,建议为Kubero组件配置适当的资源请求和限制。
-
存储配置: MicroK8s的存储插件可能需要额外配置才能与Kubero完美配合,特别是需要动态存储供应时。
-
网络考虑: 确保MicroK8s的DNS和Ingress控制器正常工作,这对Kubero管理应用至关重要。
通过以上步骤和注意事项,开发者可以在MicroK8s环境中顺利部署和使用Kubero,为Kubernetes应用管理提供便利的本地开发体验。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
pc-uishopTNT开源商城系统使用java语言开发,基于SpringBoot架构体系构建的一套b2b2c商城,商城是满足集平台自营和多商户入驻于一体的多商户运营服务系统。包含PC 端、手机端(H5\APP\小程序),系统架构以及实现案例中应满足和未来可能出现的业务系统进行对接。Vue00
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX01