从零实现聚类算法:MATLAB实现详解
2025-06-19 01:33:03作者:董灵辛Dennis
引言
聚类分析是机器学习中无监督学习的重要分支,广泛应用于数据挖掘、模式识别、图像分析等领域。本文将详细介绍如何使用MATLAB从零实现多种经典聚类算法,帮助读者深入理解聚类算法的核心原理和实现细节。
基础聚类算法
K-means算法
K-means是最经典的聚类算法之一,其核心思想是将数据点划分为K个簇,每个簇的中心是该簇所有点的均值。算法流程如下:
- 随机选择K个初始质心
- 将每个数据点分配到最近的质心所在的簇
- 重新计算每个簇的质心
- 重复步骤2-3直到质心不再变化或达到最大迭代次数
MATLAB实现时需要注意:
- 使用欧氏距离作为距离度量
- 处理空簇的特殊情况
- 设置合理的停止条件
K-means++算法
K-means++是对K-means的改进,主要优化了初始质心的选择:
- 随机选择第一个质心
- 计算每个点到最近质心的距离D(x)
- 按照D(x)²的概率选择下一个质心
- 重复步骤2-3直到选出K个质心
这种初始化方式能显著提高聚类效果,减少迭代次数。
ISODATA算法
ISODATA(迭代自组织数据分析)是K-means的扩展版本,增加了分裂和合并操作:
- 分裂条件:当簇内方差超过阈值时,将该簇分裂为两个子簇
- 合并条件:当簇内样本数少于阈值时,合并距离最近的两个簇
MATLAB实现时需要设置多个参数:
- 期望簇数K
- 最小簇样本数阈值
- 最大簇内方差阈值
- 最小簇间距离阈值
高级聚类算法
Mean Shift算法
Mean Shift是一种基于密度的非参数聚类算法,特点包括:
- 不需要预先指定簇数
- 自动发现任意形状的簇
- 对噪声鲁棒
算法核心步骤:
- 对每个点,计算其邻域内点的均值向量
- 将点移动到均值位置
- 重复直到收敛
MATLAB实现关键点:
- 核函数的选择(通常使用高斯核)
- 带宽参数的设置
- 收敛阈值的确定
DBSCAN算法
DBSCAN(基于密度的空间聚类)是另一种重要的密度聚类算法:
- 核心点:邻域内样本数超过阈值的点
- 边界点:在核心点邻域内但自身不是核心点的点
- 噪声点:既不是核心点也不是边界点的点
算法优势:
- 能处理任意形状的簇
- 对噪声鲁棒
- 不需要预先指定簇数
MATLAB实现注意事项:
- 距离矩阵的计算优化
- 邻域查询效率
- 参数(ε和MinPts)的选择策略
子空间聚类算法
子空间K-means
传统K-means在高维数据上效果不佳,子空间K-means通过引入维度权重解决这个问题:
- 为每个维度分配权重
- 约束权重和为1
- 在EM框架下交替更新权重和簇中心
MATLAB实现公式:
% 权重更新公式
w_j = 1/sum(exp(-beta * D_j))
熵加权子空间K-means
为解决子空间K-means倾向于使用少数维度的问题,引入熵正则项:
目标函数:
J = J_kmeans + λ * H(w)
其中H(w)是权重分布的熵,λ是调节参数。
MATLAB实现技巧:
- 使用拉格朗日乘数法处理约束
- 熵项的计算
- 正则化系数的选择
实现建议
- 数据预处理:标准化数据使各维度具有可比性
- 可视化:使用MATLAB绘图功能观察聚类效果
- 评估指标:实现轮廓系数、DB指数等评估指标
- 参数调优:设计交叉验证策略选择最优参数
结语
本文详细介绍了从零实现多种聚类算法的MATLAB方法,涵盖了基础算法和高级变种。理解这些算法的实现细节不仅能帮助解决实际问题,也是深入机器学习领域的重要基础。建议读者动手实现每个算法,通过实践加深理解。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
535
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178