首页
/ Arrow DataFusion 物理执行计划与数据源依赖关系设计探讨

Arrow DataFusion 物理执行计划与数据源依赖关系设计探讨

2025-05-31 12:31:33作者:宣利权Counsellor

在分布式查询引擎Arrow DataFusion的架构设计中,物理执行计划(physical-plan)与数据源(datasource)模块之间的依赖关系一直是一个值得深入探讨的技术话题。本文将详细分析当前架构中存在的依赖问题,探讨可能的解决方案,并给出专业的设计建议。

当前依赖关系分析

DataFusion当前的设计中,datasource模块依赖于physical-plan模块。这种设计导致了一个有趣的架构现象:physical-plan模块无法直接访问真实的datasource执行计划,而所有数据源却能访问所有物理计划(尽管它们实际上只需要访问trait定义)。

这种依赖关系在datasource模块从core分离之前就已经存在。从技术实现角度看,这种设计确实带来了一些架构上的不一致性。例如,DataSourceExec位于datasource模块中,而DataSinkExec却位于physical-plan模块中,这种不对称的分布可能导致下游用户在实现自定义source和sink时遇到困惑。

依赖关系设计考量

从架构设计原则来看,理想的依赖关系应该遵循从高层到底层的方向。多位开发者提出了不同的观点:

  1. 一种观点认为依赖链应该是:Catalog → Schema → Table → File → PhysicalPlan,因此physical-plan访问datasource违反了这一依赖方向。

  2. 另一种观点认为,物理执行计划采用树形表示,节点需要访问其子节点(自上而下方法)。在这种视角下,物理计划需要持有其数据源执行计划(如DataSourceExec),因此physical-plan应该能够访问datasource。

解决方案探讨

针对这一架构问题,提出了几种可能的解决方案:

方案一:引入physical-plan-common模块

建议引入一个新的physical-plan-common模块,包含ExecutionPlan trait定义和其他共享组件。依赖关系将变为:

  • datasource → physical-plan-common
  • physical-plan → physical-plan-common
  • physical-plan → datasource

这种设计的优势包括:

  • physical-plan可以访问实际的datasource执行计划,不再依赖mock
  • 通过集中管理执行计划定义,改善了代码组织结构
  • 在保持必要访问的同时,最小化datasource的依赖

方案二:重构模块职责

另一种思路是将DataSinkExec和相关内容也移动到datasource模块中,并可能将模块重命名为"connectors"或其他与IO相关的名称。这种方案更强调将所有与数据源/接收器相关的实现集中管理。

技术权衡与建议

经过深入讨论,社区更倾向于保持现有的依赖方向,即datasource依赖于physical-plan。这种设计更符合物理计划是更高层次抽象的理念。同时,可以通过以下方式优化当前架构:

  1. 减少datasource对physical-plan的依赖,仅保留必要的trait引用
  2. 引入更明确的配置结构(如FileFormatFactoryConfig)来隔离不同层次的依赖
  3. 仔细审查Session等跨模块依赖,确保它们确实必要

对于需要共享的公共组件,确实值得考虑创建一个新的common模块,但需要谨慎评估其范围和影响,避免过度工程化。

总结

在分布式查询引擎的架构设计中,模块间的依赖关系直接影响系统的可维护性和扩展性。DataFusion面临的这一设计挑战反映了在保持架构清晰与满足功能需求之间的平衡。当前的设计虽有改进空间,但已能较好地支持核心功能。未来可能的优化方向包括更精细的模块划分和依赖管理,以及更清晰的接口定义。

登录后查看全文
热门项目推荐
相关项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
223
2.26 K
flutter_flutterflutter_flutter
暂无简介
Dart
525
116
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
JavaScript
210
286
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
frameworksframeworks
openvela 操作系统专为 AIoT 领域量身定制。服务框架:主要包含蓝牙、电话、图形、多媒体、应用框架、安全、系统服务框架。
CMake
795
12
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
984
581
pytorchpytorch
Ascend Extension for PyTorch
Python
67
97
ops-mathops-math
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
566
94
GLM-4.6GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
44
0