PaddleDetection模型导出为PIR格式JSON文件的方法
在PaddleDetection项目中,模型导出功能支持将训练好的模型转换为多种格式,其中包括PIR(Program Intermediate Representation)格式的JSON文件。本文将详细介绍如何正确导出PIR格式的模型文件。
PIR格式简介
PIR(Program Intermediate Representation)是PaddlePaddle深度学习框架中的一种中间表示格式,它以JSON形式保存模型的完整结构和参数信息。相比传统的二进制模型文件,PIR格式具有更好的可读性和可移植性。
导出PIR格式模型的方法
在PaddleDetection 2.8.1版本中,默认情况下使用export_model.py脚本导出模型时不会自动生成PIR格式的JSON文件。要导出PIR格式,需要显式指定相关参数。
正确导出命令
使用以下命令可以导出包含PIR格式JSON文件的模型:
python tools/export_model.py -c config.yml --output_dir=./inference_model -o export_with_pir=True
关键参数说明:
-c config.yml:指定模型配置文件--output_dir=./inference_model:指定输出目录-o export_with_pir=True:启用PIR格式导出
常见问题解决
-
缺少JSON文件输出:如果没有看到model.json文件生成,请确保已添加
-o export_with_pir=True参数。 -
启用静态图模式错误:尝试使用
paddle.enable_static()可能会导致错误,因为PaddleDetection的某些组件(如PicoHead)在静态图模式下初始化权重时会出现兼容性问题。建议不要手动启用静态图模式,而是依赖导出脚本的自动处理。 -
版本兼容性:确保使用的PaddlePaddle版本(如3.0.0 GPU版本)与PaddleDetection版本(2.8.1)兼容。
导出结果说明
成功执行导出命令后,在输出目录中会生成以下文件:
model.pdmodel:模型的二进制表示model.json:PIR格式的模型结构描述(JSON格式)- 其他相关配置文件
PIR格式的JSON文件包含了模型的完整结构信息,可以用于模型分析、转换或其他后处理操作。这种格式特别适合需要人工查看模型结构或进行模型转换的场景。
通过掌握这些导出技巧,开发者可以更灵活地使用PaddleDetection训练出的模型,满足不同场景下的部署需求。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00