**Logback Elasticsearch Appender使用指南**
2024-10-10 13:55:39作者:蔡丛锟
项目概述
本教程基于GitHub上的开源项目logback-elasticsearch-appender,该库允许用户直接从Logback将日志事件发送到Elasticsearch,实现高效、异步的日志处理。
1. 目录结构及介绍
internetitem-logback-elasticsearch-appender/
│
├── src # 源代码目录
│ └── main # 主要源码,包括Java类
│ ├── java # Java源代码文件,包含ElasticsearchAppender等关键类
│ └── resources # 配置资源,可能包含示例配置文件
│
├── pom.xml # Maven项目配置文件,定义依赖关系和构建设置
│
├── LICENSE.txt # 许可证文件,表明该项目遵循EPL 1.0和LGPL 2.1双许可
│
└── README.md # 项目快速入门和主要信息的说明文档
src/main/java: 包含了所有核心逻辑,如ElasticsearchAppender,用于自定义日志处理流。pom.xml: Maven项目文件,管理项目依赖、构建路径及版本控制。LICENSE.txt: 文档中提到的许可证详情,确保合规使用。README.md: 用户首先接触的指导性文档,包含了安装、配置和使用的基本步骤。
2. 启动文件介绍
此项目作为一个库,并没有一个典型的“启动文件”来运行整个应用,而是集成在使用它的应用程序中。集成的关键在于添加依赖和配置Logback。具体来说,在使用Logback的应用中通过修改其配置文件(通常是logback.xml)来激活并配置这个Appender。
虽然没有单独的启动脚本,但是集成过程涉及以下步骤:
- 在你的应用程序的
pom.xml中添加项目的依赖。 - 编辑或创建
logback.xml配置文件,加入<appender>定义以启用Elasticsearch日志记录。
3. 项目配置文件介绍
Maven依赖添加
在项目的pom.xml中,需要包含以下依赖来集成该Appender:
<dependency>
<groupId>com.internetitem</groupId>
<artifactId>logback-elasticsearch-appender</artifactId>
<version>1.6</version>
</dependency>
Logback XML配置
接着,在logback.xml中配置Elasticsearch Appender:
<configuration>
<!-- ... 其他logback配置 -->
<appender name="ELASTIC" class="com.internetitem.logback.elasticsearch.ElasticsearchAppender">
<url>http://yourserver/_bulk</url>
<index>logs-%date[yyyy-MM-dd]</index>
<!-- 更多其他配置选项 -->
</appender>
<root level="info">
<appender-ref ref="ELASTIC" />
<!-- 可能还会有其他的appender引用 -->
</root>
<!-- 根据需要可以配置特定的日志记录器和错误处理日志记录器 -->
</configuration>
<url>是你的Elasticsearch集群的_BULK API端点地址。<index>定义了日志索引名模式,支持时间格式化,确保每天自动创建新索引。- 此外,还可以配置类型(
type)、超时时间、重试次数、队列大小等多种参数,以适应不同的应用场景。
请注意,根据实际需求调整这些配置项,并确保Elasticsearch的服务端配置与之相匹配,特别是当涉及到版本兼容性和API变更时。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 Jetson TX2开发板官方资源完全指南:从入门到精通 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 WebVideoDownloader:高效网页视频抓取工具全面使用指南
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
20
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
385
3.71 K
暂无简介
Dart
634
144
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
651
272
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.12 K
627
React Native鸿蒙化仓库
JavaScript
244
316
Ascend Extension for PyTorch
Python
196
214