Operator Lifecycle Manager (OLM) 使用指南
项目介绍
Operator Lifecycle Manager (OLM) 是 Operator Framework 的核心组件之一,它提供了一种高效、自动化且可扩展的方式来管理和操作 Kubernetes 上的原生应用程序,这些应用程序通常被称为 Operators。OLM 允许开发者通过声明式的方法在集群内安装、更新和管理 Operators 及其依赖的服务,从而极大地简化了复杂应用的生命周期管理。它利用 Kubernetes 的自定义资源定义(CRDs)、控制器模式和 Operator 概念,为集群带来强大的扩展性和运维能力。
项目快速启动
环境准备
确保你的开发环境满足以下要求:
git版本 >= v1.12+docker或podman>= v1.2.0+ 或buildah>= v1.7+kubectl>= v1.11.3+- 访问到一个 Kubernetes v1.11.3+ 集群
安装 OLPM
在你的 Kubernetes 集群上安装 OLM,可以通过以下步骤完成:
# 获取 OLM 的最新部署脚本
curl -L https://github.com/operator-framework/operator-lifecycle-manager/releases/download/vX.Y.Z/install.sh | sudo bash -
# 替换 X.Y.Z 为实际想安装的 OLM 版本
创建第一个 Operator
假设你已经有了一个 Operator 的 CSV(ClusterServiceVersion)文件和其他必要的资源定义,你可以通过创建相关资源来快速启动 Operator:
# 示例 CSV 文件的简单示例
apiVersion: operators.coreos.com/v1alpha1
kind: ClusterServiceVersion
metadata:
name: myoperator.v1.0.0
spec:
...
使用 kubectl apply 应用这个 CSV 到集群:
kubectl apply -f myoperator.csv.yaml
应用案例和最佳实践
案例一:自动更新
在 OperatorHub.io 上订阅 Operator,并配置自动更新至特定通道,可以实现 Operator 的自动版本管理,确保集群上的 Operator 总是最新且稳定。
最佳实践:
- 使用清晰的 CSV 来精确描述Operator的能力和需求。
- 利用 Channels 实现多版本管理,方便用户选择适合的版本。
- 设计Operator时遵循幂等性原则,确保操作的可靠性和可恢复性。
典型生态项目
OLM 不仅被用来自管其身,也支撑着大量复杂的商业和开源 Operators,如Etcd Operator、Prometheus Operator等。这些项目通过 Operator 方式提供了平台级的服务管理能力,例如:
- Etcd Operator: 自动化管理Etcd集群的生命周期。
- Prometheus Operator: 提供 Prometheus 监控堆栈的部署和管理,简化监控配置。
通过采用 OLM,这些项目能够轻松地集成到 Kubernetes 生态中,实现服务的标准化部署和管理,提高了运维效率和系统的稳定性。
以上简要介绍了 OLM 的快速启动步骤、一些基本应用案例及最佳实践,以及它在开源生态中的位置。为了深入理解和使用 OLM,建议参考 官方文档 获取更详细的信息和高级功能的指导。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00