解决 create-t3-turbo 项目中 TypeScript 增量编译缓存问题
在 create-t3-turbo 项目中,开发者遇到了一个关于 TypeScript 增量编译的有趣问题。当删除已编译的 dist 目录后,再次运行构建命令时,Turbo 会显示"FULL TURBO"提示,但实际上并未重新生成 dist 目录。这显然不是预期行为,因为开发者期望的是能够重新构建输出。
问题现象分析
该问题表现为:
- 执行 pnpm build 命令成功生成 dist 目录
- 手动删除 dist 目录后
- 再次执行相同的构建命令
- Turbo 显示使用缓存(FULL TURBO)
- dist 目录未被重新生成
经过多次测试发现,单纯删除 dist 目录并不足以触发 TypeScript 的重新编译。这是因为 TypeScript 的增量编译机制依赖于 tsbuildinfo 文件来跟踪项目状态。
技术背景
TypeScript 的增量编译功能通过 tsbuildinfo 文件记录编译状态。这个文件包含了项目源文件和输出文件之间的映射关系。当启用增量编译时,TypeScript 编译器会检查这个文件来决定哪些文件需要重新编译。
在 create-t3-turbo 项目中,tsconfig.json 配置中明确指定了 tsBuildInfoFile 路径为 node_modules/.cache/tsbuildinfo.json,这意味着编译状态信息被存储在缓存目录中。
解决方案探索
经过多次尝试,开发者发现了几个关键点:
- 仅删除 dist 目录不足以触发重新编译
- 删除 packages/[package]/node_modules/.cache/tsbuildinfo.json 有时有效
- 最可靠的解决方法是同时删除 package 本地和根目录的缓存文件
最终,通过修改构建脚本,在构建前主动清理相关缓存文件,可以确保每次构建都能正确生成输出目录。建议的构建脚本修改如下:
"build": "rimraf dist/ && rimraf node_modules/.cache/tsbuildinfo.json && tsc --noEmit false --outDir dist"
这个脚本确保在每次构建前:
- 删除旧的 dist 目录
- 清除 TypeScript 的编译状态缓存
- 执行 TypeScript 编译并输出到 dist 目录
替代方案讨论
除了解决 TypeScript 增量编译问题外,社区还探讨了其他构建方案:
- 使用 tsup 或 pkgroll 等替代构建工具
- 在生产环境直接使用 tsx 运行 TypeScript 文件,避免编译步骤
特别是 tsx 方案,通过在 Dockerfile 中直接运行 node --import tsx src/index.ts,可以完全跳过构建步骤。这种方案简化了开发流程,但也需要考虑运行时性能影响。
最佳实践建议
对于 create-t3-turbo 项目,推荐以下做法:
- 在构建脚本中显式清理缓存文件
- 考虑在 monorepo 的清理命令中包含缓存清理
- 如果选择直接运行 TypeScript 的方案,需要评估生产环境性能影响
理解 TypeScript 增量编译机制对于解决这类问题至关重要。通过合理配置构建流程,可以确保开发体验的一致性和可靠性。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00