Cache-Manager项目中的缓存方案选择指南
2025-07-08 05:01:39作者:傅爽业Veleda
在Node.js应用开发中,缓存是提升性能的重要手段。Cache-Manager项目提供了多种缓存解决方案,包括Cacheable和Keyv等库,开发者常常困惑于如何选择合适的工具。本文将深入分析这些方案的特点和适用场景。
核心缓存方案对比
Cacheable是专为缓存场景设计的解决方案,相比Keyv具有更优化的默认配置和更丰富的功能。Keyv本质上是一个存储适配器,而Cacheable则专注于提供高性能的缓存能力。
Cacheable默认集成了经过优化的内存缓存驱动,开箱即用:
import { Cacheable } from 'cacheable';
const cache = new Cacheable();
内存缓存配置
CacheableMemory提供了灵活的内存缓存配置选项:
import { Cacheable, CacheableMemory } from 'cacheable';
const options = {
ttl: '1h', // 缓存有效期1小时
useClones: true, // 使用值克隆(默认开启)
lruSize: 1000, // LRU缓存大小(0表示无限制)
};
const primary = new CacheableMemory(options);
const cache = new Cacheable({primary});
多级缓存架构
Cacheable支持构建多级缓存系统,例如内存+Redis的组合:
import { Cacheable, CacheableMemory } from 'cacheable';
import KeyvRedis from '@keyv/redis';
const primary = new CacheableMemory({ttl: '1h'});
const secondary = new KeyvRedis('redis://user:pass@localhost:6379');
const cache = new Cacheable({primary, secondary});
这种架构中,内存缓存作为一级缓存提供极速访问,Redis作为二级缓存提供持久化存储,兼顾了性能和可靠性。
高级功能
Cacheable还提供了wrap函数,实现了对同步和异步函数的记忆化(Memoization)支持。这个功能可以自动缓存函数调用结果,简化开发流程。
关于缓存未解析的Promise,技术上虽然可能,但实际场景中意义不大,因为Promise在被缓存后无法保持其未解析状态。开发者应考虑使用Cacheable提供的wrap功能来优化异步操作。
选型建议
对于大多数Node.js应用的缓存需求,推荐优先考虑Cacheable。它不仅提供了优化的默认配置,还支持灵活的多级缓存架构,能够满足从简单到复杂的各种缓存场景。当需要从内存缓存迁移到Redis等持久化存储时,Cacheable的无缝切换能力也能显著降低迁移成本。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C030
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
425
3.26 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
334
暂无简介
Dart
686
161
Ascend Extension for PyTorch
Python
231
264
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
667
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
19
30