Azure AI ML 客户端中获取在线端点密钥的正确方法
在使用 Azure AI ML 服务时,开发者经常需要与在线端点(Online Endpoints)进行交互,其中一个常见操作是获取端点的访问密钥。近期有用户反馈在使用 ml_client.online_endpoints.list_keys 方法时遇到了问题,本文将详细介绍正确的密钥获取方式及其技术背景。
问题背景
在 Azure AI ML 的 Python SDK (azure-ai-ml) 中,开发者通过 MLClient 与机器学习服务交互。当需要获取在线端点的访问密钥时,部分开发者可能会尝试使用 list_keys 方法,但实际上这是不正确的 API 调用方式。
正确的密钥获取方法
正确的做法是使用 get_keys 方法,该方法专门设计用于获取在线端点的访问凭证。以下是标准的使用示例:
# 获取在线端点密钥
keys = ml_client.online_endpoints.get_keys(name="your-endpoint-name")
# 输出主密钥和次密钥
print(keys.primary_key)
print(keys.secondary_key)
技术细节解析
-
密钥类型:Azure AI ML 在线端点提供两种密钥 - 主密钥(primary_key)和次密钥(secondary_key),用于身份验证和访问控制。
-
安全性考虑:密钥是敏感信息,应当妥善保管。Azure 提供了细粒度的权限控制,建议仅向必要的人员或服务授予密钥访问权限。
-
API 设计理念:
get_keys方法遵循 Azure SDK 的统一设计规范,与 Azure REST API 保持一致性,确保开发者体验的统一性。
最佳实践建议
-
密钥轮换:定期轮换密钥以增强安全性,Azure 提供了方便的密钥更新机制。
-
最小权限原则:仅授予应用程序所需的最低权限级别的密钥。
-
密钥存储:避免将密钥硬编码在代码中,考虑使用 Azure Key Vault 等安全存储方案。
-
错误处理:在使用密钥时实现适当的错误处理机制,包括密钥失效时的自动更新逻辑。
总结
理解并正确使用 Azure AI ML 客户端 API 是开发高效机器学习工作流的关键。通过本文介绍的正确方法获取在线端点密钥,开发者可以避免常见错误,构建更安全可靠的机器学习应用。记住,在 Azure AI ML 生态中,get_keys 才是获取端点密钥的标准方法,这一设计既符合安全最佳实践,也保持了 API 的一致性。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00