Azure AI ML 客户端中获取在线端点密钥的正确方法
在使用 Azure AI ML 服务时,开发者经常需要与在线端点(Online Endpoints)进行交互,其中一个常见操作是获取端点的访问密钥。近期有用户反馈在使用 ml_client.online_endpoints.list_keys 方法时遇到了问题,本文将详细介绍正确的密钥获取方式及其技术背景。
问题背景
在 Azure AI ML 的 Python SDK (azure-ai-ml) 中,开发者通过 MLClient 与机器学习服务交互。当需要获取在线端点的访问密钥时,部分开发者可能会尝试使用 list_keys 方法,但实际上这是不正确的 API 调用方式。
正确的密钥获取方法
正确的做法是使用 get_keys 方法,该方法专门设计用于获取在线端点的访问凭证。以下是标准的使用示例:
# 获取在线端点密钥
keys = ml_client.online_endpoints.get_keys(name="your-endpoint-name")
# 输出主密钥和次密钥
print(keys.primary_key)
print(keys.secondary_key)
技术细节解析
-
密钥类型:Azure AI ML 在线端点提供两种密钥 - 主密钥(primary_key)和次密钥(secondary_key),用于身份验证和访问控制。
-
安全性考虑:密钥是敏感信息,应当妥善保管。Azure 提供了细粒度的权限控制,建议仅向必要的人员或服务授予密钥访问权限。
-
API 设计理念:
get_keys方法遵循 Azure SDK 的统一设计规范,与 Azure REST API 保持一致性,确保开发者体验的统一性。
最佳实践建议
-
密钥轮换:定期轮换密钥以增强安全性,Azure 提供了方便的密钥更新机制。
-
最小权限原则:仅授予应用程序所需的最低权限级别的密钥。
-
密钥存储:避免将密钥硬编码在代码中,考虑使用 Azure Key Vault 等安全存储方案。
-
错误处理:在使用密钥时实现适当的错误处理机制,包括密钥失效时的自动更新逻辑。
总结
理解并正确使用 Azure AI ML 客户端 API 是开发高效机器学习工作流的关键。通过本文介绍的正确方法获取在线端点密钥,开发者可以避免常见错误,构建更安全可靠的机器学习应用。记住,在 Azure AI ML 生态中,get_keys 才是获取端点密钥的标准方法,这一设计既符合安全最佳实践,也保持了 API 的一致性。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C030
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00