pyAudioProcessing 项目使用教程
2024-09-28 02:08:29作者:韦蓉瑛
1. 项目目录结构及介绍
pyAudioProcessing 项目的目录结构如下:
pyAudioProcessing/
├── data_samples/
├── pyAudioProcessing/
├── requirements/
│ └── requirements.txt
├── tests/
├── .gitignore
├── CODE_OF_CONDUCT.md
├── LICENSE.md
├── README.md
├── setup.cfg
└── setup.py
目录结构介绍
- data_samples/: 存放示例音频数据的目录。
- pyAudioProcessing/: 项目的主要代码目录,包含音频处理和特征提取的实现。
- requirements/: 存放项目依赖文件的目录,包含
requirements.txt文件。 - tests/: 存放测试代码的目录。
- .gitignore: Git 忽略文件配置。
- CODE_OF_CONDUCT.md: 项目的行为准则。
- LICENSE.md: 项目的开源许可证文件。
- README.md: 项目的说明文档。
- setup.cfg: 项目的配置文件。
- setup.py: 项目的安装脚本。
2. 项目的启动文件介绍
pyAudioProcessing 项目没有明确的“启动文件”,因为它是一个库,而不是一个独立的应用程序。用户可以通过导入 pyAudioProcessing 模块来使用其中的功能。
例如:
from pyAudioProcessing import feature_extraction
# 使用 feature_extraction 模块中的功能
features = feature_extraction.extract_features("path/to/audio.wav")
3. 项目的配置文件介绍
setup.cfg
setup.cfg 是项目的配置文件,用于配置 setuptools 的安装过程。它通常包含以下内容:
[metadata]
name = pyAudioProcessing
version = 1.1.13
description = A Python based library for processing audio data into features (GFCC, MFCC, spectral, chroma) and building Machine Learning models.
long_description = file: README.md
long_description_content_type = text/markdown
author = Jyotika Singh
author_email = jyotika.singh@example.com
url = https://github.com/jsingh811/pyAudioProcessing
license = GPL-3.0
[options]
packages = find:
install_requires =
numpy
scipy
scikit-learn
librosa
[options.packages.find]
where = .
setup.py
setup.py 是项目的安装脚本,用于定义项目的元数据和依赖项。它通常包含以下内容:
from setuptools import setup, find_packages
setup(
name="pyAudioProcessing",
version="1.1.13",
description="A Python based library for processing audio data into features (GFCC, MFCC, spectral, chroma) and building Machine Learning models.",
long_description=open("README.md").read(),
long_description_content_type="text/markdown",
author="Jyotika Singh",
author_email="jyotika.singh@example.com",
url="https://github.com/jsingh811/pyAudioProcessing",
license="GPL-3.0",
packages=find_packages(),
install_requires=[
"numpy",
"scipy",
"scikit-learn",
"librosa"
],
classifiers=[
"License :: OSI Approved :: GNU General Public License v3 (GPLv3)",
"Programming Language :: Python :: 3",
"Programming Language :: Python :: 3.6",
"Programming Language :: Python :: 3.7",
"Programming Language :: Python :: 3.8",
"Programming Language :: Python :: 3.9",
],
)
setup.py 文件定义了项目的名称、版本、描述、作者、依赖项等信息,并指定了项目的包和分类器。
通过以上配置文件,用户可以轻松地安装和使用 pyAudioProcessing 项目。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
248
2.47 K
deepin linux kernel
C
24
6
仓颉编译器源码及 cjdb 调试工具。
C++
116
89
React Native鸿蒙化仓库
JavaScript
217
298
暂无简介
Dart
548
119
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.02 K
599
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
411
Ascend Extension for PyTorch
Python
88
118
仓颉编程语言运行时与标准库。
Cangjie
124
102
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
592
125