pyAudioProcessing 项目使用教程
2024-09-28 11:29:42作者:韦蓉瑛
1. 项目目录结构及介绍
pyAudioProcessing 项目的目录结构如下:
pyAudioProcessing/
├── data_samples/
├── pyAudioProcessing/
├── requirements/
│ └── requirements.txt
├── tests/
├── .gitignore
├── CODE_OF_CONDUCT.md
├── LICENSE.md
├── README.md
├── setup.cfg
└── setup.py
目录结构介绍
- data_samples/: 存放示例音频数据的目录。
- pyAudioProcessing/: 项目的主要代码目录,包含音频处理和特征提取的实现。
- requirements/: 存放项目依赖文件的目录,包含
requirements.txt
文件。 - tests/: 存放测试代码的目录。
- .gitignore: Git 忽略文件配置。
- CODE_OF_CONDUCT.md: 项目的行为准则。
- LICENSE.md: 项目的开源许可证文件。
- README.md: 项目的说明文档。
- setup.cfg: 项目的配置文件。
- setup.py: 项目的安装脚本。
2. 项目的启动文件介绍
pyAudioProcessing 项目没有明确的“启动文件”,因为它是一个库,而不是一个独立的应用程序。用户可以通过导入 pyAudioProcessing
模块来使用其中的功能。
例如:
from pyAudioProcessing import feature_extraction
# 使用 feature_extraction 模块中的功能
features = feature_extraction.extract_features("path/to/audio.wav")
3. 项目的配置文件介绍
setup.cfg
setup.cfg
是项目的配置文件,用于配置 setuptools
的安装过程。它通常包含以下内容:
[metadata]
name = pyAudioProcessing
version = 1.1.13
description = A Python based library for processing audio data into features (GFCC, MFCC, spectral, chroma) and building Machine Learning models.
long_description = file: README.md
long_description_content_type = text/markdown
author = Jyotika Singh
author_email = jyotika.singh@example.com
url = https://github.com/jsingh811/pyAudioProcessing
license = GPL-3.0
[options]
packages = find:
install_requires =
numpy
scipy
scikit-learn
librosa
[options.packages.find]
where = .
setup.py
setup.py
是项目的安装脚本,用于定义项目的元数据和依赖项。它通常包含以下内容:
from setuptools import setup, find_packages
setup(
name="pyAudioProcessing",
version="1.1.13",
description="A Python based library for processing audio data into features (GFCC, MFCC, spectral, chroma) and building Machine Learning models.",
long_description=open("README.md").read(),
long_description_content_type="text/markdown",
author="Jyotika Singh",
author_email="jyotika.singh@example.com",
url="https://github.com/jsingh811/pyAudioProcessing",
license="GPL-3.0",
packages=find_packages(),
install_requires=[
"numpy",
"scipy",
"scikit-learn",
"librosa"
],
classifiers=[
"License :: OSI Approved :: GNU General Public License v3 (GPLv3)",
"Programming Language :: Python :: 3",
"Programming Language :: Python :: 3.6",
"Programming Language :: Python :: 3.7",
"Programming Language :: Python :: 3.8",
"Programming Language :: Python :: 3.9",
],
)
setup.py
文件定义了项目的名称、版本、描述、作者、依赖项等信息,并指定了项目的包和分类器。
通过以上配置文件,用户可以轻松地安装和使用 pyAudioProcessing 项目。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0330- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
178
263

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
868
514

openGauss kernel ~ openGauss is an open source relational database management system
C++
130
183

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
288
323

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
373

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
600
58

基于可以运行在OpenHarmony的git,提供git客户端操作能力
ArkTS
10
3