Blockscout项目中的Polygon链智能合约查询性能优化分析
2025-06-17 07:14:57作者:郦嵘贵Just
背景介绍
在区块链浏览器Blockscout的实际应用中,我们发现Polygon链上的"已验证智能合约列表"查询出现了严重的性能问题。该查询在请求时会返回500错误状态,初步分析表明问题出在一个特定的数据库查询函数上。本文将深入剖析这一性能瓶颈的成因,并提出针对性的优化方案。
问题现象
当用户访问已验证智能合约列表页面时,系统需要执行一个包含多个关联查询的复杂操作。在Polygon这样的高交易量链上,这个查询变得异常缓慢,甚至导致请求超时。通过性能分析,我们定位到问题主要出在maybe_filter_verified_addresses函数中的数据库查询部分。
技术分析
现有索引设计缺陷
当前系统使用的索引设计存在明显不足:
CREATE INDEX addresses_verified_index ON addresses ((1)) WHERE verified = true;
这种索引设计虽然能够快速识别已验证地址,但存在两个关键缺陷:
- 使用了常量表达式
(1)作为索引键,这实际上没有为查询提供有效的访问路径 - 没有包含查询中需要的其他列(如用于排序的transactions_count字段)
数据规模影响
对比不同链上的表现差异更能说明问题:
- 在Arbitrum链上(约7000万地址记录),查询耗时约8秒
- 在Polygon链上(约5.8亿地址记录),相同查询耗时超过21分钟
数据规模扩大了8.3倍,但查询时间却增加了160倍,这明显不符合线性增长预期,表明存在严重的性能瓶颈。
执行计划分析
通过分析PostgreSQL的执行计划,我们发现:
- 在小规模数据上,数据库选择了高效的索引扫描方式
- 在大规模数据上,优化器选择了低效的位图扫描方式
- 大规模查询中出现了5450万次行重新检查,I/O操作量增加了25倍
优化方案
索引重构方案
我们建议彻底重构现有索引设计:
-- 删除原有低效索引
DROP INDEX addresses_verified_index;
-- 创建包含查询所需全部字段的复合索引
CREATE INDEX addresses_verified_hash_txcount_idx
ON addresses(hash, transactions_count)
WHERE verified = true;
新索引设计具有以下优势:
- 直接包含查询条件和排序字段
- 支持索引覆盖扫描,避免回表操作
- 针对已验证地址查询场景专门优化
数据库参数调优
针对大规模数据场景,建议调整以下参数:
-- 增加工作内存,减少临时文件使用
work_mem = '32MB'
多维度索引策略
如果业务中存在多种排序需求,可以考虑创建多个专用索引:
-- 按交易数排序的索引
CREATE INDEX addresses_verified_txcount_idx ON addresses(transactions_count) WHERE verified = true;
-- 按创建时间排序的索引
CREATE INDEX addresses_verified_created_idx ON addresses(inserted_at) WHERE verified = true;
预期收益
实施上述优化后,我们预计可以获得以下改进:
- 查询性能提升100-150倍
- 服务器负载显著降低
- I/O操作量大幅减少
- 不同规模链上的性能表现更加一致
总结
在区块链浏览器这类数据密集型应用中,合理的数据库设计对性能至关重要。通过对Polygon链上已验证智能合约查询问题的分析,我们展示了如何通过索引重构和参数调优来解决大规模数据场景下的性能瓶颈。这些优化原则不仅适用于Blockscout项目,也可以为其他区块链数据服务的设计提供参考。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
WebVideoDownloader:高效网页视频抓取工具全面使用指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 Python案例资源下载 - 从入门到精通的完整项目代码合集 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南
项目优选
收起
deepin linux kernel
C
24
7
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
291
2.62 K
Ascend Extension for PyTorch
Python
123
149
暂无简介
Dart
582
127
React Native鸿蒙化仓库
JavaScript
227
306
仓颉编译器源码及 cjdb 调试工具。
C++
121
381
仓颉编程语言运行时与标准库。
Cangjie
130
394
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.05 K
610
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
606
185
openGauss kernel ~ openGauss is an open source relational database management system
C++
155
205