Blockscout项目中的Polygon链智能合约查询性能优化分析
2025-06-17 15:11:40作者:郦嵘贵Just
背景介绍
在区块链浏览器Blockscout的实际应用中,我们发现Polygon链上的"已验证智能合约列表"查询出现了严重的性能问题。该查询在请求时会返回500错误状态,初步分析表明问题出在一个特定的数据库查询函数上。本文将深入剖析这一性能瓶颈的成因,并提出针对性的优化方案。
问题现象
当用户访问已验证智能合约列表页面时,系统需要执行一个包含多个关联查询的复杂操作。在Polygon这样的高交易量链上,这个查询变得异常缓慢,甚至导致请求超时。通过性能分析,我们定位到问题主要出在maybe_filter_verified_addresses
函数中的数据库查询部分。
技术分析
现有索引设计缺陷
当前系统使用的索引设计存在明显不足:
CREATE INDEX addresses_verified_index ON addresses ((1)) WHERE verified = true;
这种索引设计虽然能够快速识别已验证地址,但存在两个关键缺陷:
- 使用了常量表达式
(1)
作为索引键,这实际上没有为查询提供有效的访问路径 - 没有包含查询中需要的其他列(如用于排序的transactions_count字段)
数据规模影响
对比不同链上的表现差异更能说明问题:
- 在Arbitrum链上(约7000万地址记录),查询耗时约8秒
- 在Polygon链上(约5.8亿地址记录),相同查询耗时超过21分钟
数据规模扩大了8.3倍,但查询时间却增加了160倍,这明显不符合线性增长预期,表明存在严重的性能瓶颈。
执行计划分析
通过分析PostgreSQL的执行计划,我们发现:
- 在小规模数据上,数据库选择了高效的索引扫描方式
- 在大规模数据上,优化器选择了低效的位图扫描方式
- 大规模查询中出现了5450万次行重新检查,I/O操作量增加了25倍
优化方案
索引重构方案
我们建议彻底重构现有索引设计:
-- 删除原有低效索引
DROP INDEX addresses_verified_index;
-- 创建包含查询所需全部字段的复合索引
CREATE INDEX addresses_verified_hash_txcount_idx
ON addresses(hash, transactions_count)
WHERE verified = true;
新索引设计具有以下优势:
- 直接包含查询条件和排序字段
- 支持索引覆盖扫描,避免回表操作
- 针对已验证地址查询场景专门优化
数据库参数调优
针对大规模数据场景,建议调整以下参数:
-- 增加工作内存,减少临时文件使用
work_mem = '32MB'
多维度索引策略
如果业务中存在多种排序需求,可以考虑创建多个专用索引:
-- 按交易数排序的索引
CREATE INDEX addresses_verified_txcount_idx ON addresses(transactions_count) WHERE verified = true;
-- 按创建时间排序的索引
CREATE INDEX addresses_verified_created_idx ON addresses(inserted_at) WHERE verified = true;
预期收益
实施上述优化后,我们预计可以获得以下改进:
- 查询性能提升100-150倍
- 服务器负载显著降低
- I/O操作量大幅减少
- 不同规模链上的性能表现更加一致
总结
在区块链浏览器这类数据密集型应用中,合理的数据库设计对性能至关重要。通过对Polygon链上已验证智能合约查询问题的分析,我们展示了如何通过索引重构和参数调优来解决大规模数据场景下的性能瓶颈。这些优化原则不仅适用于Blockscout项目,也可以为其他区块链数据服务的设计提供参考。
登录后查看全文
热门项目推荐
相关项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GLM-V
GLM-4.5V and GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement LearningPython00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0107AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile010
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp课程中屏幕放大器知识点优化分析2 freeCodeCamp Cafe Menu项目中link元素的void特性解析3 freeCodeCamp英语课程填空题提示缺失问题分析4 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 5 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析6 freeCodeCamp全栈开发课程中React实验项目的分类修正7 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析8 freeCodeCamp博客页面工作坊中的断言方法优化建议9 freeCodeCamp论坛排行榜项目中的错误日志规范要求10 freeCodeCamp课程页面空白问题的技术分析与解决方案
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 Jetson TX2开发板官方资源完全指南:从入门到精通 WebVideoDownloader:高效网页视频抓取工具全面使用指南 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
209
2.21 K

暂无简介
Dart
520
115

Ascend Extension for PyTorch
Python
64
94

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
552
87

React Native鸿蒙化仓库
C++
209
285

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
978
577

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

openGauss kernel ~ openGauss is an open source relational database management system
C++
147
194