Blockscout项目中的Polygon链智能合约查询性能优化分析
2025-06-17 01:58:39作者:郦嵘贵Just
背景介绍
在区块链浏览器Blockscout的实际应用中,我们发现Polygon链上的"已验证智能合约列表"查询出现了严重的性能问题。该查询在请求时会返回500错误状态,初步分析表明问题出在一个特定的数据库查询函数上。本文将深入剖析这一性能瓶颈的成因,并提出针对性的优化方案。
问题现象
当用户访问已验证智能合约列表页面时,系统需要执行一个包含多个关联查询的复杂操作。在Polygon这样的高交易量链上,这个查询变得异常缓慢,甚至导致请求超时。通过性能分析,我们定位到问题主要出在maybe_filter_verified_addresses函数中的数据库查询部分。
技术分析
现有索引设计缺陷
当前系统使用的索引设计存在明显不足:
CREATE INDEX addresses_verified_index ON addresses ((1)) WHERE verified = true;
这种索引设计虽然能够快速识别已验证地址,但存在两个关键缺陷:
- 使用了常量表达式
(1)作为索引键,这实际上没有为查询提供有效的访问路径 - 没有包含查询中需要的其他列(如用于排序的transactions_count字段)
数据规模影响
对比不同链上的表现差异更能说明问题:
- 在Arbitrum链上(约7000万地址记录),查询耗时约8秒
- 在Polygon链上(约5.8亿地址记录),相同查询耗时超过21分钟
数据规模扩大了8.3倍,但查询时间却增加了160倍,这明显不符合线性增长预期,表明存在严重的性能瓶颈。
执行计划分析
通过分析PostgreSQL的执行计划,我们发现:
- 在小规模数据上,数据库选择了高效的索引扫描方式
- 在大规模数据上,优化器选择了低效的位图扫描方式
- 大规模查询中出现了5450万次行重新检查,I/O操作量增加了25倍
优化方案
索引重构方案
我们建议彻底重构现有索引设计:
-- 删除原有低效索引
DROP INDEX addresses_verified_index;
-- 创建包含查询所需全部字段的复合索引
CREATE INDEX addresses_verified_hash_txcount_idx
ON addresses(hash, transactions_count)
WHERE verified = true;
新索引设计具有以下优势:
- 直接包含查询条件和排序字段
- 支持索引覆盖扫描,避免回表操作
- 针对已验证地址查询场景专门优化
数据库参数调优
针对大规模数据场景,建议调整以下参数:
-- 增加工作内存,减少临时文件使用
work_mem = '32MB'
多维度索引策略
如果业务中存在多种排序需求,可以考虑创建多个专用索引:
-- 按交易数排序的索引
CREATE INDEX addresses_verified_txcount_idx ON addresses(transactions_count) WHERE verified = true;
-- 按创建时间排序的索引
CREATE INDEX addresses_verified_created_idx ON addresses(inserted_at) WHERE verified = true;
预期收益
实施上述优化后,我们预计可以获得以下改进:
- 查询性能提升100-150倍
- 服务器负载显著降低
- I/O操作量大幅减少
- 不同规模链上的性能表现更加一致
总结
在区块链浏览器这类数据密集型应用中,合理的数据库设计对性能至关重要。通过对Polygon链上已验证智能合约查询问题的分析,我们展示了如何通过索引重构和参数调优来解决大规模数据场景下的性能瓶颈。这些优化原则不仅适用于Blockscout项目,也可以为其他区块链数据服务的设计提供参考。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
645
149
Ascend Extension for PyTorch
Python
207
221
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
653
286
React Native鸿蒙化仓库
JavaScript
250
317
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.13 K
637
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
78
101
仓颉编译器源码及 cjdb 调试工具。
C++
130
861
仓颉编程语言运行时与标准库。
Cangjie
134
873