StreamPark中Flink on Yarn会话创建超时问题分析与解决方案
问题背景
在使用StreamPark 2.1.3版本管理Flink on Yarn会话集群时,开发人员遇到了一个关键性问题:在创建Yarn会话时,系统仅设置了5秒的超时时间来获取作业状态,而实际环境中Yarn资源分配平均需要10秒左右。这导致StreamPark无法有效管理Yarn会话作业,系统会抛出TimeoutException异常。
问题现象
当用户尝试通过StreamPark创建Flink on Yarn会话时,控制台会记录以下关键错误信息:
java.util.concurrent.TimeoutException
at java.base/java.util.concurrent.FutureTask.get(FutureTask.java:204)
at org.apache.streampark.console.core.service.impl.FlinkClusterServiceImpl.start(FlinkClusterServiceImpl.java:177)
从堆栈信息可以看出,问题发生在获取作业状态时,系统设置的超时时间不足,无法完成正常的资源分配和会话创建流程。
技术分析
根本原因
-
超时时间设置不合理:StreamPark默认仅设置5秒的超时时间来获取Yarn上的作业状态,这对于大多数生产环境来说明显不足。
-
Yarn资源分配特性:在真实生产环境中,Yarn资源分配通常需要更长时间(平均10秒左右),特别是在集群资源紧张时,等待时间可能更长。
-
缺乏可配置性:当前版本中这个超时参数是硬编码的,无法通过配置灵活调整,无法适应不同规模和环境下的集群。
影响范围
该问题直接影响以下场景:
- 通过StreamPark创建新的Flink on Yarn会话集群
- 对现有Yarn会话集群的管理操作
- 需要获取Yarn上Flink作业状态的各类操作
解决方案
官方修复
StreamPark开发团队已经意识到这个问题,并在以下版本中进行了修复:
- 即将发布的2.1.4版本:包含了针对此问题的修复
- 开发分支(dev):已经合并了相关修复代码
临时解决方案
对于仍在使用2.1.3版本的用户,可以考虑以下临时方案:
-
代码层面修改:找到FlinkClusterServiceImpl.java的第177行附近,调整FutureTask.get()的超时参数。
-
环境优化:确保Yarn集群资源充足,减少资源分配时间。
-
升级准备:提前规划升级到2.1.4版本,以获得官方修复。
最佳实践建议
-
版本选择:生产环境建议使用2.1.4或更高版本,避免此问题。
-
参数配置:在新版本中,合理配置以下参数:
- 任务提交超时时间
- 状态获取超时时间
- 资源等待时间
-
监控设置:建立对Yarn资源分配的监控,了解实际资源分配时间分布,为参数配置提供依据。
-
容量规划:根据业务需求合理规划Yarn集群资源,避免因资源不足导致分配时间过长。
总结
StreamPark作为Flink作业管理平台,在Yarn会话管理方面提供了便利的操作界面。此次超时问题的修复,体现了开发团队对生产环境实际需求的重视。用户在使用时应当注意版本选择,并根据自身集群特性合理配置各项参数,以确保系统稳定运行。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00