Livebook中VegaLite图表日期时间数据持久化问题解析
2025-06-08 22:11:50作者:滕妙奇
问题背景
在使用Livebook进行数据可视化时,开发者发现当图表中包含日期时间类型数据时,启用"持久化输出"功能会导致保存失败。这个问题主要出现在使用VegaLite库创建包含NaiveDateTime类型数据的图表时。
问题复现
要复现这个问题,只需要在Livebook中创建以下三个单元格:
- 安装依赖:
Mix.install([
{:kino_vega_lite, "~> 0.1.10"}
])
- 创建包含日期时间数据的数据结构:
df = %{
a: [~N[2024-05-24 12:04:49.619102], ~N[2024-05-23 12:00:39.619102]],
b: [14, 67]
}
- 创建VegaLite图表:
VegaLite.new()
|> VegaLite.data_from_values(df, only: ["a", "b"])
|> VegaLite.mark(:point)
|> VegaLite.encode_field(:x, "a", type: :temporal)
|> VegaLite.encode_field(:y, "b", type: :quantitative)
当尝试保存这个Livebook并启用"持久化输出"选项时,保存操作会失败。
技术分析
从错误日志可以看出,问题出在Livebook尝试对NaiveDateTime结构体进行排序操作时。错误信息表明Enumerable协议没有为NaiveDateTime结构体实现,而Livebook在持久化过程中需要对数据进行排序以确保一致性。
具体来说,Livebook的导出模块(Livebook.LiveMarkdown.Export)在ensure_order函数中尝试对数据进行排序,但NaiveDateTime结构体并不支持直接的枚举操作。
解决方案
这个问题已经在Livebook的代码库中得到修复。修复的核心思路是:
- 正确处理日期时间类型数据的序列化
- 确保在持久化过程中不会对不支持排序操作的数据结构进行排序
修复后的Livebook能够正确地将包含日期时间数据的VegaLite图表持久化为类似以下的格式:
{
"$schema":"https://vega.github.io/schema/vega-lite/v5.json",
"data":{
"values":[
{"a":"2024-05-24T12:04:49.619102","b":14},
{"a":"2024-05-23T12:00:39.619102","b":67}
]
},
"encoding":{
"x":{"field":"a","type":"temporal"},
"y":{"field":"b","type":"quantitative"}
},
"mark":"point"
}
最佳实践建议
对于需要在Livebook中使用日期时间数据创建可视化图表的开发者,建议:
- 确保使用最新版本的Livebook
- 对于复杂的日期时间操作,考虑先将数据转换为字符串格式
- 定期保存工作进度,特别是在进行大量数据可视化操作时
- 如果遇到类似问题,可以尝试禁用"持久化输出"选项作为临时解决方案
总结
这个问题展示了在数据序列化和持久化过程中处理复杂数据类型时可能遇到的挑战。Livebook团队通过修复这个问题,增强了对Elixir中日期时间类型数据的支持,使得数据可视化工作流更加稳定可靠。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
302
2.65 K
Ascend Extension for PyTorch
Python
131
153
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
457
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
610
196
React Native鸿蒙化仓库
JavaScript
230
307
暂无简介
Dart
593
129
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.05 K
613
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,专门为Transformer模型的训练和推理而设计。
C++
48
77
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
360
2.44 K
openGauss kernel ~ openGauss is an open source relational database management system
C++
155
205